Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

Mathematics for Computer Science

Yumbayar Namsrai

August 1999

UNU/IIST Report No. 173

www.manaraa.com

UNU/IIST and UNU/IIST Reports

UNU/IIST is a Research and Training Center of the United Nations University. It was founded in 1992,
and is located in Macau. UNU/IIST is jointly funded by the Governor of Macau and the Governments of
China and Portugal through contribution to the UNU Endowment Fund.

The mission of UNU/IIST is to assist developing countries in the application and development of software
technology.

UNU/IIST contributes through its programmatic activities:

1. advanced development projects in which software techniques supported by tools are applied,
2. research projects in which new techniques for software development are investigated,

3. curriculum development projects in which courses of software technology for universities in developing
countries are developed,

4. courses which typically teach advanced software development techniques,
5. events in which conferences and workshops are organised or supported by UNU/IIST, and

6. dissemination, in which UNU/IIST regularly distributes to developing countries information on in-
ternational progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively partic-
ipate in all these projects. By doing the projects they are trained.

At present, the technical focus of UNU/IIST is on formal methods for software development. UNU/IIST

is an internationally recognised center in the area of formal methods. However, no software technique is
universally applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU/IIST produces a report series. Reports are either Research @, Technical , Compendia or

Administrative . They are records of UNU/IIST activities and research and development achievements.
Many of the reports are also published in conference proceedings and journals.

Please write to UNU/IIST or visit UNU/IIST home page: http://www.iist.unu.edu, if you would like to
know more about UNU/IIST and its report series.

Zhou Chaochen, Director — 01.8.1997 — 31.7.2001

www.manaraa.com

Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

P.O. Box 3058
Macau

Mathematics for Computer Science

Yumbayar Namsrai

Abstract

To give students a solid and rigorous background in computer science the requisite mathe-
matical foundations are necessary. Mathematical logic (propositional and predicate logics), set
theory, mappings, relations, and recursive and inductive definition of processes and properties
of a system are very important especially for courses such as “Software Specification”, “Formal
Methods for Software Development” and “Reasoning About Software”. The use of program-
ming languages which admit recursive routines requires precise understanding of recursion. We
present detailed teaching materials for these subjects of mathematics.

www.manaraa.com

Yumbayar Namsrai was a UN Fellow at UNU/IIST from September 1996 to June 1997 and from
May 1999 to August 1999. He studied mathematics at The National University of Mongolia
in Ulaanbaatar, Mongolia, from 1967 to 1972, and worked at the Joint Institute for Nuclear
Research (JINR), Dubna, USSR from 1972 to 1981 where he was awarded a Candidate of Science
degree in Physics and Mathematics (Software Systems of Computers and Computing Systems)
in 1982. After returning to Mongolia he became the Head of the Programming Department in
the Mathematics Faculty at The National University of Mongolia, and in January 1998 moved
to the Computer Science and Management School of the Mongolian Technical University, also in
Ulaanbaatar, where he is now Head of the Computer Science Department. His research interests
are in the computerisation of the traditional Mongolian script.

Copyright (© 1999 by UNU/IIST, Yumbayar Namsrai

www.manharaa.com

Contents i

Contents
1 Introduction 1
2 Classical logic 3
2.1 Propositional Logic L 4
2.1.1 Propositions and Logical Connectives 4
2.1.2 Propositional Expressions 7
2.1.3 Rules of Precedence oo 8
2.1.4 Evaluating Expressions L 0oL 11
2.1.5 Truth Tables 12
2.1.6 Properties of expressionso 14
2.1.7 Additional Connectives L L 16
2.1.8 Logical Equivalences L Lo 17
2.1.9 Proof Techniques 21
2.2 Predicate Logic 29
2.2.1 Introduction 29
222 Truthsets 32
2.2.3 Connections of Predicates L. 33
224 Quantifiers L 35
2.2.5 Quantification over empty domains L. 37
2.2.6 Negation of quantified statements 37
2.2.7 Multiple quantifierso 39
2.2.8 Expressions of predicate logic Lo 0oL 42
2.2.9 Validity of expressionso 45
3 Set theory basics 47
3.1 Introduction. e 48
3.2 Relationships between sets L L oL 51
3.3 Cardinality and power set 53
3.4 Operationson sets L e 54
3.5 Lawsofsetalgebra 57
4 Mappings 60
4.1 Introduction. e e 60
4.2 Relationships between mappingso 64
4.3 Operations on Mappings« « v v v v e e e e e e e e 64
5 Functions 67
5.1 Introduction. 67
5.2 Defining functionso 69
5.3 Classification of functions L oo 71
5.4 Composition of functions 76
6 Relations 78
6.1 Introduction. e 78
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Contents ii

6.2 Functions and relations Lo 80
6.3 Classification of binary relations oo 81
6.4 Operations on relations 84
6.5 Transitive and reflexive closures, 84
7 Recursion 86
7.1 Introduction e e e e e 86
7.2 Tfexpressions 88
7.3 Explicit definition of functions Lo o oo 89
7.4 Factorial function L 90
7.5 Tracing a recursive function L L Lo 91
7.6 The greatest common divisor 92
7.7 Intermediate recursion example L Lo Lo 94
7.8 Advanced recursion exampleo Lo 96
7.9 Afinal word L e 98
8 Induction 99
8.1 Introduction. e e e e e 99
8.2 Inductive definitions 99
8.3 Proof by induction L 101
8.4 First principle of mathematical induction 103
8.5 Second principle of mathematical induction00 104
8.6 Set induction e e e e 105
9 Introduction to propositional modal logic 107
9.1 Modal formulae 107
9.2 Schemata and substitutiono 109
9.3 Framesand models e 110
9.4 Valuation and tautology 113
9.5 Truth and validity 114
9.6 Generated submodels. e 115
9.7 p-Morphisms 117
10 Conclusion 118
11 Acknowledgements 118

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction 1

1 Introduction

According to [1], mathematical maturity is essential to the successful mastery of several funda-
mental topics in computing, and all computing students should take mathematics courses which
cover at least the following subjects:

Discrete mathematics: sets, functions, elementary propositional and predicate logic, elemen-
tary graph theory, proof theory, combinatorics, probability, and random numbers.

Calculus: differential and integral calculus, including sequences and series and an introduction
to differential equations.

In addition, mathematics courses should include some of the following subjects:

Probability: discrete and continuous, including elementary statistics.
Linear algebra: elementary, including matrices, vectors, and linear transformations.

Mathematical logic: propositional and functional calculi, completeness, validity, proof, and
decision problems.

Based on these guidelines and on an extensive investigation of the curricula of computer sci-
ence departments of several universities (where mathematics courses for computing are variously
called “Discrete mathematics”, “Discrete structures”, “Discrete mathematics in computer sci-
ence”, “Discrete structures in computer science”, “Mathematics of computer science”, etc.) we
propose a course “Mathematics for computer science” with the following contents:

1. Numbers
Positional and based number systems; decimal, binary, octal and hexadecimal systems;
radix conversion; representation of numbers in computers: natural numbers, two’s com-
plement, signed integers and floating-point numbers; least common multiple and greatest
common divisor of positive integers, and algorithms for computing them; primes and fac-
torisation; congruence and modular arithmetic.

2. Classical Logic

2.1 Propositional logic: propositions and logical connectives; propositional expressions;
rules of precedence; evaluation of expressions; truth tables; properties of expressions;
logical equivalences; proof techniques.

2.2 Predicate logic: introduction to predicate logic; truth sets of predicates; connections
of predicates; quantifiers; expressions of predicate logic; validity of expressions.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Introduction 2

3. Arguments and proof techniques
Argument forms; validity of an argument and testing arguments for validity; valid argu-
ment forms: modus ponens and modus tollens, disjunctive addition, conjunctive simplifi-
cation, disjunctive syllogism and hypothetical syllogism; proof techniques: vacuous proof,
trivial proof, direct proof, proof of the contrapositive, proof by contradiction, proof by
cases.

4. Set theory
Introduction to set theory; relationships between sets; operations on sets; laws of set
algebra.

5. Mappings
Introduction to mappings; relationships between mappings; operations on mappings.

6. Functions
Introduction to functions; defining functions; classification of functions; composition of
functions.

7. Relations
Introduction to relations; functions and relations; classification of binary relations; opera-
tions on relations.

8. Recursion
Introduction to recursion; examples.

9. Induction
Introduction to induction; proof by induction; first and second principles of induction.

10. Counting, Permutations and Combinations
Basics of counting; permutations; combinations; formulae involving combinations; inclu-
sion and exclusion principle; the pigeon hole principle.

11. Graph theory
Introduction to graph theory; connected graphs; isomorphisms and subgraphs; matrix rep-
resentations of graphs; weighted graphs; Warshall’s algorithm for computing the existence
of paths; Dijkstra’s algorithm for finding the shortest path; trees; rooted trees; binary
trees.

12. Random numbers
Introduction to random numbers; the expected value; the chi-square test.

In this report we present material which could form the contents of those seven of the above
topics which are the most important mathematical background for students of formal methods.
In particular, this material could form the basis for an introductory course on mathematics for
those who wish to study formal methods but who lack the required mathematical knowledge
to attend a formal methods course directly, and as such could be given prior to the formal
methods course, for example the course on RAISE (Rigorous Approach to Industrial Software
Engineering) [2, 3] given by UNU/IIST.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 3

The report also includes a section which gives an introduction to propositional modal logic. This
topic does not appear in the list above, but it forms the mathematical basis for much research
work in formal methods, in particular for the Duration Calculus which is one of UNU/IIST’s
main research areas. This section could be used as introductory material by those wishing to
study Duration Calculus, and could also form the basis for a short introductory course given
prior to a course on Duration Calculus for those students who are not familiar with modal logic.

Although we focus on the topics which are most important for formal methods, the material
presented, suitably extended with material for the sections not treated here, could of course form
the bulk of a more general “Mathematics for computer science” course for university computer
science departments, and as such could be useful to university computer science students in
general.

Teaching materials for the sections included in this report, specifically overhead projector foils
for lecturers, are available from UNU/IIST and can in fact be downloaded electronically from

UNU/IIST’s home pages at the following URL:
http://www.iist.unu.edu/home/Unuiist /newrh/II/1/3/2/page.html.

2 Classical logic

Logic is the science of order and form. Even if we do not know whether there is a zoo in Macau
There is a zoo in Macau or There is not a zoo in Macau

is true. The truth of the sentence can be determined from its structure all without knowing
whether its constituents are true or false. Similarly, we determine that the sentence

w>1.00rm<1.0

is true without knowing the value of w. In fact, both sentences are instances of the abstract
sentence

P or (not P)

and any sentence of this form is true regardless of whether P is a true or a false proposition.
Consider the two following statements:

If I wake up late or if I miss the bus, I will be late for work.
Therefore, if I arrived at work on time, I did not wake up late and I did not miss the bus.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 4

If x is a real number such that z < —2 or 2 < z, then z? > 4.
Therefore, if 22 < 4, then —2 < z and z < 2.

Logic helps us to analyse an argument’s form to determine if the truth of the conclusion follows
from the truth of the preceding statements. While the content of the two statements above is
different, their logical form is similar.

Let P stand for the statements ‘I wake up late’ and ‘x is a real number such that © < —2’. Let
Q@ stand for the statements ‘I miss the bus’ and ‘x is a real number such that x > 2’. Let R
stand for the statements ‘I am late for work’ and ‘z? > 4’. Then the common form of both of
the above arguments is:

If P or) then R.
Therefore, if (not R) then (not P) and (not Q).

Logic also provides a notation for specifications that is precise, comprehensive, economical and
easy to manipulate. This chapter presents a language of abstract sentences, called propositional
logic, and introduces techniques for determining whether a given abstract sentence is valid or
contradictory and whether two given abstract sentences are equivalent.

2.1 Propositional Logic

2.1.1 Propositions and Logical Connectives

The building blocks for logical constructs (or logical sentences) are the set of all declarative
sentences which can be classified as true or false, but not both. We call such a declarative
sentence a proposition (or a statement). For example, ‘T am in Macau’ is a statement, but ‘I am
lying’ is not a statement because it is not possible to say whether it is true or false. Similarly,
‘A (male) barber who shaves only men who do not shave themselves, shaves himself’ is not a
statement. According to the second clause of this sentence, the barber shaves himself. But the
first clause states that he only shaves men who do not shave themselves, therefore he does not
shave himself. This is contradictory.

This type of sentence is known as a paradox.

Propositions may be elementary, in the sense that their truth is trivially known, or compound
sentences. These compound sentences are built from elementary ones which are joined or mod-

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 5

ified using a set of well-defined connectives or operators.

One goal of logic is to define a set of connectives and how they operate, and to determine the
truth value of compound propositions (sentences).

We first introduce the basic symbols and show how they are combined to form the sentences of
propositional logic.

Definition (propositions)
The sentences of propositional logic are made up of the following symbols, called propositions:

e The truth constants true and false
We sometimes use T instead of {rue and F instead of false for simplicity.
e The propositional letters

P,Q,R,S,P;,Q1, Ry, 51, P, ... (the capital letters, possibly with a numerical subscript)

Definition (connectives) Let P and @ be statements.

1. AND
e The proposition ‘P and Q’, denoted by P A @, is true if both P and @ are true and
false otherwise.
e It is called the conjunction of P and Q.
e Examples
(a) 242=4" A ‘3—2=1’ is true.
(b) ‘It is raining’ A ‘It is not raining’ is false.
2. OR
e The proposition ‘P or Q’, denoted by P V @, is false only if both P and @ are false;
otherwise it is true.
e It is called the disjunction of P and Q.
o Examples
(a) 24+2=4" Vv ‘I am sitting’ is true.
(b) ‘It is raining’ V ‘It is not raining’ is true.
() 9—1<7 V~‘10—-1<8 is false.
3. NOT

e The proposition ‘not P’, denoted by ~ P, is true if P is false and false if P is true.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 6

e ~ P is called the negation of P.
e P is true if ~ P is false and conversely.
e Examples
(a) not ‘2+2=4’ (or ~‘242=4’) is false.
(b) ~(9—-1<7 VvV 10— 1< 8) is true.
4. CONDITIONAL

A conditional statement is a statement of the form ‘if P, then Q’.

It is written as P — @, P being called the antecedent and @) the consequent.

P — (@ is false only if P is true and @ is false, otherwise it is true.

Examples

(a) The sentence ‘If today is Friday, then 3+2=6" would be written in the form
P — @, where P stands for the sentence ‘Today is Friday’ and) stands for the
sentence ‘3+2=6’. It is true if today is not Friday, but if today is Friday it is
false because @ is false.

(b) ‘If it is sunny today, then we will go to the beach’ is true if it is sunny and we
go to the beach, but it is false if it is sunny and we do not go to the beach.

5. EQUIVALENCE or BICONDITIONAL
e A statement of the form: ‘P if and only if Q’ is called the equivalence or the bicon-
ditional of P and Q. It is written P =@ or P <> Q or P iff Q.
e P =(is true only if P and @ have the same truth value.
o Examples
(a) ‘14+1=2" = ‘6—3=2" is true.
(b) ‘The earth is flat’ = ‘3 < 5’ is false.

The truth values of the connectives are summarised in the following truth tables:

Here, if the truth value of P is as given in the first column, the truth value of (~ P) is as shown
in the final column.

o)

=S HESENE I e
= o

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 7

Here, if the truth values of P and) are as given in the first two columns, the truth values of
the sentences (P A Q), (P V Q), ... are as shown in the appropriate columns.

Observe that according to the definition of the OR. connective, it is “inclusive” in the sense that
PV @ is true when both P and @ are true.

Note also that, according to the definition of the CONDITIONAL connective, the sentence
(P — @) is true whenever its antecedent P is false or its consequent @) is true i.e. false — P

and P — true are true for any sentence P.

In logic, the sentence P — @ is well-defined even if there is no causal relationship between P
and). For example, the concrete sentence

If Macau is the capital of England, then it is summer here

is considered to be a true sentence irrespective of whether or not it is summer because its
antecedent is false.

2.1.2 Propositional Expressions

Expressions of propositional logic are built up from propositions by application of the proposi-
tional connectives. We use the script letters £, F, G, and H, possibly with a numerical subscript,
to stand for expressions.

Definition (expressions)
Expressions are formed according to the following rules:

e Every proposition, i.e. a truth constant or a propositional letter, is an expression.

e If F and G are expressions, then so are the following connections of them:

(~F)
(~)
(FAG)
(FVG)
(F—=0)
(F=9)
Example
The following strings are expressions:
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 8

(~(PV@)=((~P)
(PVQ)A(Q— R)) — ((P

For example,

F: ((~(PVQ)=((~P)A(~Q))

is an expression because both P and () are expressions, hence

(P \% Q): (N P): and (N Q)

are expressions, hence

(~ (PVQ)) and ((~ P)A(~ Q)

are expressions, hence the given

F:((~PVvQ)=((~P)A(~Q))

is an expression.

2.1.3 Rules of Precedence

According to the definition of propositional expressions, any propositional expression should be
of the form ~ (Expr) or (Expry * Expry), where ‘*’ is one of the binary logical connectives. This
makes propositional expressions very large, in the sense that they are written with many pairs
of parentheses. To keep the number of parentheses to a minimum, some rules of precedence are
introduced which guarantee a unique meaning for a compound proposition.

Definition (precedence rules)

1. The order of evaluation is ~ AV —= (~ has the highest priority).
2. We may always omit the outermost pair of parentheses.

3. If there are different connectives in an expression, then that connective which has the
highest priority evaluates first, and if more than one occurrence of the same connective is
in an expression, then these connectives evaluate from left to right.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 9

4. If there are more than one successive occurrence of the same connective in an expression,
then we may only omit the outermost pair of parentheses of the subexpression on the left
side of each connective.

5. We may omit all pairs of parentheses which can unambiguously be restored using the above
four rules.
Examples

F:((~(PVQ)=((~P)A(~Q))

can be written as follows:

Expressions Rules used
F:(~(PVvQ)=(~P)N(~Q)) rule 2
F:~(PVQ)=(~P)N(~Q) the outermost parentheses of

subexpressions on both sides
of = are omitted

F: ~(PVQ)=~PA~Q the parentheses of subexpres-
sions on both sides of A are
omitted

The expression
£:((P—Q) = (R—S))
can be written as:
E:(P—>Q)—=(R—Y9) (rule 2)

There are three occurrences of — in the expression. There is no subexpression in parentheses
on the left of the second or the third of them, but subexpressions on both sides of the second
are in parentheses. According to rule 4, we may omit the parentheses of the subexpression on
the left:

E:P—>Q—(R—9) (rule 4)

NOTATION

Of course, there may be parentheses in an expression that cannot be omitted without losing the
meaning of the original expression. For example, the parentheses in the following expressions
cannot be omitted.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 10

E:P—>Q—(R—19)
F: ~(PVQ)=~PA~Q

Let us insert parentheses in the expression

E:P—>Q—R—S

There are three — connectives, and a propositional letter (P) is on the left of the first (from
the left) connective, so it should not be in parentheses. There are subexpressions on both sides
of the second one, but according to rule 4 only parentheses of the left subexpression may be
omitted, so the expression is equivalent to the following expression:

E:(P—-Q)—R—S

Now there is a subexpression on the left of the third conditional sign and its parentheses may
be omitted, so we arrive at the following form:

E:((P—>Q)—R)— S

Finally, we write the whole expression in parentheses:

E:((P=-Q)—=R)—09)

We can check that this is not equivalent to ((P — @) — (R — S)) which is the original expres-
sion we started with.

Let us similarly insert parentheses in the expression

F: ~PVQ=~PAN~Q

First, all negations can be in parentheses because negation has the highest priority:

Fi(~P)VQ=(~P)A(~Q)

Next, the conjunction may be in parentheses because it has the second highest priority:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 11

F:i(~P)VQ=((~P)A(~Q))

Then, the disjunction may be in parentheses because it has higher priority than equivalence:

F:l(~P)vQ)=((~P)A(~Q))

Finally, we arrive at

F:((~P)vQ)=((~P)A(~Q)))

which is not the same as ((~ (PV Q)) = ((~ P)A (~Q))).

2.1.4 Evaluating Expressions

For any expression £, we often need to calculate its truth value by assigning a given truth value,
either true or false, to each of the propositional letters in the expression. To do this, let n be
the number of propositional letters contained in the expression. Then we may use the following
algorithm.

Evaluation algorithm

1. Create a table with two rows and n+1 columns and write the propositional letters of the
given expression in the first n columns of the first row and the expression itself in the last
column.

2. Number all the operators (connectives) within the expression according to their evaluation
order as defined by the precedence rules. Here we should recall that the subexpression in
the innermost parentheses must be evaluated first.

3. Fill the columns of the second row with the given truth values of the corresponding propo-
sitional letters.

4. Evaluate the operator which has the lowest number which has not yet been evaluated, and
write its result in the second row, exactly under the sign of the operator.

5. Repeat the previous step until the last operator has been evaluated.

Examples
Evaluate the expression

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 12

E(P—=Q)N(Q — P)
when P is false and @ is true. After the first three steps of the algorithm, the table would be:

3 2
P=Q AN Q=P

In the next step, we should evaluate the operator which has number 1. Its result is true according
to the truth table of —-:

1 9 2
PlQ|(P=Q AN (Q—P)
FlTf T

Now, we should evaluate operator number 2. Its result is false:

1 3 2
Pl (P=Q) A (Q—P)
F|T| T F

Finally, we evaluate the last operator. Its result is false and this is therefore the value of the
whole expression for the given values of its propositional letters P and Q:

1 3 2
Pl (P=>@Q) A (Q—P)
F|T| T F F

2.1.5 Truth Tables

For a given expression, a table containing its values under all possible combinations of truth
values of the propositional letters within the expression is called the truth table of the given
expression.

If an expression contains only two propositional letters P and @), we distinguish two cases, as-
signing P the truth values true and false respectively. In each case we also distinguish between
two sub-cases, assigning () the truth values true and false respectively. Thus, for an expression
containing only two propositional letters P and @), there are four possible combinations of truth
values of the letters. So we must consider the following four pairs:

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 13

eSS I I |
H e M0

In general, if an expression contains n propositional letters there are 2™ different combinations
of truth values of the letters.

We can use the algorithm described above to calculate the truth table of a given expression.
Thus, if an expression contains n propositional letters, then its truth table contains n+1 rows

and n+1 columns.

Examples
The truth table of the expression

E(P—=Q)Y N(Q—P)

is

HAa ™Al ~
HMEM™E > w
Hm a8 o

Now, suppose our given expression is

F: ~(PVQ)=~PA~Q.

Its truth table is

2 1 6 3 5 4
PlQ|~ (PVQ = ~P A ~Q
T|T|F T T F F F
T|F||F T T F F T
F|T|F T T T F F
F|F|T F T T T T

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 14

2.1.6 Properties of expressions

1. Definition (tautology)
An expression € is called a tautology if it is always true regardless of the truth values of
its propositional letters (or component letters).

2. Definition (contradiction)
A contradiction is an expression which is false regardless of the truth values of its propo-
sitional letters. So, if £ is a tautology, then ~ &£ is a contradiction and vice versa.

3. Definition (valid expression)
We say an expression is wvalid if it is a tautology.

The most straightforward way to determine whether an expression is a tautology or a
contradiction is by a complete analysis of all possible values of the expression using its
truth table.

Examples
Consider the following:

E:PNQ— P
F:PN~PAQ

The corresponding truth tables are

oo >
Qe ~
oo > Y

eSS I I i o)
HaRaA] ™

The truth values in the column headed £ exhibit the truth values of the expression &;
because £ is true in each case we have determined that it is a tautology. In the same way,
we have determined that F is a contradiction.

4. Definition (implies)
An expression £ implies an expression F if (£ — F) is a tautology. It is written & = F.

5. Definition (equivalent expressions)
Expressions £ and F are called logically (or tautologically) equivalent if (£ = F) is a tau-
tology. It is written £ = F.

o If £ = F, then £ and F always have the same truth value for each combination of
their component letters.

o We can establish that if £ = F and F = £ then £ and F are tautologically equivalent,
ie. £ =F.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 15

Examples

Consider the two expressions

E:PAN(P—-Q)—Q
F:P5Q=~PVQ

Their corresponding truth tables are:

Q)

HA ™A
HHAAA S
HAa == =~
Ha A<

o >
HAamAall ~
s e

Because £ is true in each case, we have determined that £ is a tautology or P A (P — Q)
implies @), i.e.

PA(P—=Q)=Q
This property is called the modus ponens Law.
In the same way, we can determine that P — @ and ~ P V @ are logically equivalent, i.e.
P—-Q=~PVQ.
Show
~(PVQ)=~PA~Q
and
~(PANQ)=~PV~Q.
It is sufficient to show that the expressions
E:~(PVQ)=~PA~Q
and
F: ~(PANQ)=~PV~Q.

are tautologies which we do by constructing their truth tables:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 16

2 1 £ 3 5 4
PlQ|~ (PVQ) = ~P A ~Q
TIT|F T T F F F
T|IF|F T T F F T
F|T|F T T T F F
F|F|T F T T T T

2 1 F 3 5
PlQ| ~ (PAQ) = ~P V ~Q
TIT|F T T F F F
T|F|T F T F T T
F|T|T F T T T F
F|F|T F T T T T

The truth values in the columns headed £ and F are all true, which means that the two
pairs of expressions are equivalent.

These properties of the logical connectives ~, A and V are known as DeMorgan’s Laws.

2.1.7 Additional Connectives

In computer science, in addition to the connectives defined above, the three following connectives
are often used.

1. XOR
Recall that the V connective is “inclusive” in the sense that PV @ is true in the case where
both P and @ are true. But, for example, in the statement

Today is 5 or 6 of June

the or connective should be “exclusive” in the sense that its subsentences cannot both be
true.

e The Exclusive OR of P and @, denoted by Pxor(@, is the proposition that is true
when exactly one of P and @ is true and false otherwise.

e The equivalence
PzxorQ=(PVQ)AN~(PAQ)
holds for zor.

2. NOR

e P nor @ is a proposition which is defined by the expression
~ (PVQ),ie.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 17

Pnor @ =~ (PVQ).

e Also
Pnor Q@ =~ P A~ @ (DeMorgan’s law is used).
3. NAND
e P nand @ is a proposition which is defined by the expression
~ (PAQ), ie.
Pnand Q =~ (P AQ)
e Also

P nand Q = ~ PV ~ Q (DeMorgan’s law is used).

The truth values of these three connectives are given in the following table:

P zor Q H P nor @ H P nand Q

F
F
F
T

Up to now we have presented particular logical expressions and introduced a method of estab-
lishing their validity. Tautologies and logically equivalent expressions are very useful for making
the analytic transformations necessary to simplify complex expressions and to prove other tau-
tologies or establish the equivalence of other expressions. So we now present some of the most
important logical equivalences (or logical formulae), where F, G and H are arbitrary logical

R
SR

2.1.8 Logical Equivalences

expressions.

¢ Basic Tautologies

FV(~F)=T
F—-F=T
F=F=T

(FANG)-»F=T

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 18

e Identity Laws
FANT=F

FVF=F

e Domination Laws
FvVvT=T

FAF=F

e Idempotent Laws

FVF=F

FANF=F

e Double negation Law

e Commutative Laws

FVG=GVF
FANG=GNF
F=G=G=F

e Associative Laws
(FVOVH=FV(GVH)

(FAGANH=FAN(GAH)

(F=G)=H =F=(G=H)

e Distributive Laws

FV(GAH) = (FVG)A(FVH)

FAGVH)=(FAG)V(FAH)

e DeMorgan’s Laws
~(FANG)=~FV~G

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 19

~(FVG) =~FA~G
~(F=G) = FA~G

~(F=G)=(F=~¢)

e OR Simplification
FVF=F

FV(FAG) =F

e AND Simplification
FANT =F

FAFVG) =F

e Implication Simplification

(F2GNF—-H)=(F—->GAH)
(F>H)NG—->H)=(FVG—H)
(F2G)V(F-H)=(F—=>GVH)

(F>H)V(G—->H)=(FANG—H)

e Transitive Laws
(F=GNG—-H)—= (F—=1H)

(F=G)ANG=H)— (F=H)

e Laws of Contradiction
~(FAN~F)=T

FA~F=F

e Laws of Contraposition
F->G=~G—>~F

F=G=~F=~¢G

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic

20

e Law of Absorption
(F=G) = (F—=(FAQG)

e Law of Simplification
FANG—F

e modus ponens Law

FAF—=G)—=>¢G

e modus tollens Law

(F=G)N~G—>~F

e Tautologies for Eliminating Connectives
F—=G=~FVG

F—=G=~(FA~Q)
FVG=(~F—=Q)
FANG=~(F—=~G)
F=G=(F—=G) NG —F)

F=G=(FANG)V(~FAN~G)

Multiple disjunction and conjunction
Note that expressions such as

)

—~ <
=

) Vv S
VS))

and so forth are equivalent because of the associative law.

write any of these expressions without parentheses, as

PVQVRVS

For this reason, we will sometimes

In general, we will write a multiple disjunction and a multiple conjunction as the following:

FANFVF NV ...V Fy,

FiNFo NFs A ... NFp

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 21

2.1.9 Proof Techniques

1. Use of truth tables

The most straightforward way of proving a given tautology or the equivalence of two given
expressions is the use of truth tables and the analysis of all the possible truth values of the
expressions. For example, to prove the equivalence

~(P=Q)=(P=~Q)

we consider the two expressions:

F: ~(P=Q)

and

G:P=~Q

and calculate their truth tables

~
I~
e
Y
S

o~

o H Y
mHAH T

Then, we analyse the values of these two expressions. We determine that the given equivalence
is true because the truth values in the columns headed F and G are the same in each case.

However, the use of truth tables is tedious and unmanageable if the expressions involved are
long and complicated, in particular if they contain many different propositional letters, because
the size of the table increases exponentially with this number (for example, the truth table has
25 = 32 rows for an expression containing 5 propositional letters).

So, we need some analytic methods of proving logical properties of propositions.

2. Substitution method
Analytic transformations are often used for proving tautologies and equivalences. Such analytic

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 22

transformations must not add anything to the meaning of an expression.

Let us introduce some notion for the operation of replacing subexpressions of a given expression
with other subexpressions.

Definition (substitution)

Let G and H be expressions.

If F[G] is an expression, which may or may not contain an occurrence of the expression G as
a subexpression, then F[#]| denotes any of the expressions obtained by replacing zero, one, or
more occurrences of G in F[G] with the expression H.

For example, if

FIP]: (P V Q)

then F[Q)] denotes either of the expressions

(PV@)or(QVQ)

Note that the substitution does not necessarily denote a unique expression.

For example, if the expression F[P]: PV P is given, then F[Q] may denote any of the following
expressions:

PVP (replacing zero occurrences of P)
QVP (replacing the first occurrence of P)
PvQ (replacing the second occurrence of P)
QVve (replacing both occurrences of P)

Thus the substitution above represents any of four expressions. So, if we wish to specify which
occurrences are to be replaced, we must do so in words.

Theorem 1: For any expressions G, H and F[G], if G and H are equivalent, then F[G] and
F[H] are equivalent, i.e.

G=MH = F[G] = F[H]

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 23

This proposition is intuitively clear because G and H have the same truth value under any com-
bination of truth values of their components. Therefore in determining the truth values of F[G]
and F[#] under these combinations, we obtain the same result in each case.

Thus if two expressions are equivalent, we may replace any occurrence of one of them with the
other, obtaining an equivalent expression.

Corollary: For any expressions G, # and F[G], if G and H are equivalent and F[G] is a tautol-
ogy, then F[H] is also a tautology.

Chains of Equivalences

According to the Transitive Laws (see Section 2.1.8) the equivalence connective is transitive, i.e.
the expression

(F=G)ANG=H)— (F=H)

is a tautology. In addition, the equivalence relationship between expressions is transitive, that
is,

If F=G and G = H, then F = H.

This provides another way of proving the validity of certain expressions.

Suppose we would like to prove the validity of an expression F. We attempt to find a sequence
of expressions Fi, Fa, ...F, such that

F=F
Fi=F
fnfl—]:n

where F,, is known to be a tautology.

Then we can conclude that F is a tautology.

We write this chain of equivalences in the form:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 24

Examples

e Prove that the expression
~(~F)=>FAN(FVG)

is a tautology. We may write the following chain:

Expressions Rules used
~(~F)=>FN(FVG)
= F=>FAN(FVG) Double negation
= F->F AND - simplification
= T Basic tautologies

e Prove that the expressions
(~F—=¢G)and (~G— F)

are equivalent.
We may write the following chain:

Expressions Rules used
~F =G
~(~F)VG Elimination of —
= FVG Double negation
= GVF Commutative Law
= ~(~G)VF Double negation
= (~G—=F) Elimination of — (reverse)

3. Normal Forms

Often it is beneficial to reduce a formula to its simplest form, where only the connectives A and V
and negation are applied to elementary propositions. There are two such forms in propositional
logic.

Definition (disjunctive terms)

e Any propositional letters and their negations are disjunctive terms.

e If F and G are disjunctive terms, then so is the expression (F V G).

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 25

Examples

P, Q,~ P, (NPVQ)a ((NPVQ)VR)aa‘nd(NPvQVR)V(RVNP)

are disjunctive terms.

Definition (conjunctive normal form)
The conjunctive normal form (CNF) is a conjunction of disjunctive terms.

So, in a conjunctive normal form, the major connectives are conjunctions.

Examples
The expressions

PAQ,~PA(~PVQ), and (~PVQVR)A(RV~P)A(PVQ)

are in CNF.

Transformation to CNF

Any given logical expression can be transformed to CNF using the following algorithm:

1. Write the given expression.

2. Replace all subexpressions of the form F = G with (F — G) A (G — F).
3. Replace all subexpressions of the form F — G with (~ F V G).

4. Replace

(a) all subexpressions of the form ~ (F A G) with ~ FV ~ G,
(b) all subexpressions of the form ~ (F V G) with ~ F A ~ G,
(c) all subexpressions of the form ~ (~ F) with F.

5. Repeat step 4 until there are no negations of subexpressions, only of propositional letters.
6. Replace

(a) all subexpressions of the form H V (F A G) with (HV F) A(H V G),

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 26

(b) all subexpressions of the form (F A G)VH with (FVH) A (G V H).
7. Repeat step 6 until the expression is in CNF.

8. The result is the conjunctive normal form of the given expression.

Examples

e Given the expression (P — Q) A (P — R),
its transformation to CNF is:

(P->QANP—-R) = (~PVQ)AN(~PVR)

e the expression ~ (P — Q) V (P — R)
is transformed to CNF via:

~(P—=R)V(Q— R)

~(~PVR)V(~QVR)
(~(~P)AN~R)V(~QVR)
(PA~R)V(~QVR)
(PV(~QVR)) A(~RV(~QVR))
(PV~QVR)A(~RV~QVR)

Definition (disjunctive normal form)
Conjunctive terms can be defined similarly to disjunctive ones. Then the disjunctive normal
form (DNF) is a disjunction of conjunctive terms.

So, in a disjunctive normal form, the major connectives are disjunctions.

Examples
The expressions

PVQ,~PV(~PAQ), and (~PAQAR)V(RA~P)V(PAQ)

are in DNF.

Transformation to DNF

Any given logical expression can be transformed to DNF using the following algorithm:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 27

1. Write the given expression.

2. Replace all subexpressions of the form F = G with (F — G) A (G — F).
3. Replace all subexpressions of the form F — G with (~ FV G).

4. Replace

(a) all subexpressions of the form ~ (F A G) with ~ FV ~ G,
(b) all subexpressions of the form ~ (F V G) with ~ F A ~ G,
(c) all subexpressions of the form ~ (~ F) with F.

5. Repeat step 4 until there are no negations of subexpressions, only of propositional letters.
6. Replace

(a) all subexpressions of the form H A (F V G) with (HAF)V (HAG),
(b) all subexpressions of the form (F V G) A H with (F AH) V (G AH).

7. Repeat step 6 until the expression is in DNF.

8. The result is the disjunctive normal form of the given expression.

Examples

e Given expression (P — Q) A (P — R),
its transformation to DNF is:

(P—>Q)N(P—R)

(~PVQ)A(~PVR)
(~PVQ)A~P)V((~PVQ)AR)
(~PA~P)V(QA~P)V(~PAR)V(QAR)
= ~PV(QA~P)V(~PAR)V(QAR)

Also we can get a simple form of the given expression directly using the distributive law:

(P->QANP—-R) = (~PVQ)AN(~PVR)
= ~PV(QAR)

e Consider the expression ~ (P — Q) V (P — R).
Its transformation to DNF is:

~(P—>R)V(Q—R) ~(~PVR)V(~QVR)
(~(~P)A~R)V(~ QVR)
(PA~R)V(~QVR)

(PA~R)V~QVR

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 28

These normal forms provide a mechanism for checking whether a given formula is a tautology
or whether two expressions are equivalent.

When an expression is in disjunctive normal form then if two of its terms taken together form a
tautology (e.g. P V ~ P) then the entire disjunction must be a tautology. Also when an expres-
sion is in conjunctive normal form then if two of its terms taken together form a contradiction
(e.g. P A ~ P) then the entire conjunction must be a contradiction.

Thus, we may use one of the following strategies:

1. One way to establish the validity of an expression is first transform it to its disjunctive
normal form and then reduce it to a known tautology.

2. Another way is to negate the expression, transform it to its conjunctive normal form and
then reduce it to a known contradiction - if its negation is a contradiction, then the original
expression must be a tautology.

3. To establish equivalence of two expressions, first transform them both to CNF or DNF, and
then compare the results. If the results are the same the two expressions are equivalent.

Examples

e Check the equivalence of expressions F : ~ (P -~ Q) A (R — P)) and
G:(Q—>~P)—>~(R—P)

F:n((P=~Q)A(R— P))

~((~PV~Q)N(~RVP))
= (PAQ)V(RA~P)

G:(Q—-~P)—»~(R—P) = ~(Q—>~P)V~(R—P)
= ~(~QV~P)V~(~RVP)
= (QANP)V(RA~P)
= (PAQ)V(RA~P)

Therefore, F and G are equivalent.
e Prove the validity of the expression

(P=Q) = (P—=(PAQ))

We transform the given expression to DNF:

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 29

(P=Q)—=(P—=(PAQ))
= ~(P—=Q) V(P —=(PAQ))
~(~PVQ)V(~PV(PAQ))
(PA~Q)V(~PV(PAQ))

= (PA~Q)V~PV(PAQ) DNF

= (PAN~Q)V(PANQ)V~P Commutative law
= PA(~QVQ)V~P Distributive law

= PANTV~P Basic tautology

= PV~P AND simplification
= T Basic tautology

2.2 Predicate Logic

2.2.1 Introduction

From our study of propositional logic we can determine that a sentence such as

All people are mortal or All people are not mortal

is true, because it is an instance of the valid propositional logic expression

PV (~P)

with P as the proposition ‘All people are mortal’.

There are some sentences, however, that we cannot tell to be true or false simply by their form
because they are not instances of any valid expressions in propositional logic. Consider for
example the following sentences:

There is an even prime number and all prime numbers are not even

and

All men are mortal and Socrates is a man,
therefore Socrates is mortal

We can see immediately that both sentences are true, but the language and methods of propo-
sitional logic are not enough to express them fully or to prove their validity. For example, in the

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 30

first sentence we might take P to be the proposition ‘There is an even prime number’ and @ to
be the proposition ‘All prime numbers are even’, and we could then write the entire sentence in
the form:

PV~Q

but we cannot deduce that this is true because it is of course not a tautology.

The reason we cannot establish the validity of this kind of sentence is that the language of
propositional logic is too primitive to express properties of an object (such as being a prime
number or a man) or relationships between objects.

Sentences involving variables, such as ‘¢ = y + 3 or ‘@ > 3’ are often found in mathe-
matical assertions and in computer programs. We cannot determine whether such sentences are
true or false if the values of their variables are unknown, which means that we cannot in general
determine whether combinations of them, such as (z < —2) V (2 < z), are true or false using
the methods of propositional logic.

The language and methods of predicate logic extend propositional logic by enabling us to speak
about objects, their properties, and the relationships between them, and thus provide a way of
reasoning about this type of sentence.

Definition (symbols)
The sentences of predicate logic are made up of the following symbols:

e The truth constants
true and false

e The propositional letters

P,Q,R,S,P;,Q1, Ry, 51, P, ... (the capital letters, possibly with a numerical subscript)

e The constants
a,b,c,a1,bi,c1,a2,bz,co, ...

e The variables

T,Y,2,U,T1,Y1,21,U1,T2,Y2,...

e The predicate symbols
b,q,7,P1,41,71,P2,492, ---

Intuitively, the constants and variables denote objects, and predicate symbols denote relations
between these objects. Note that the propositional letters of propositional logic are part of the

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 31

language of predicate logic.
Definition (unary predicates)

Let D be a set and x be a variable which takes some value from the set D. Then, a unary
predicate defined on the set D is any assertive sentence involving the variable z, and is denoted
by p(z), q(z), r(z), etc. The set D is called the domain of the variable x.

Examples

1. Let D be the set of all people. Then
p(y) : ‘y is mortal’
and
q(y) : ‘y is wise’
are predicates on D .

2. Let R be the set of all real numbers. Then
pi(z) @ ‘¢ <3
and
qiz) : (z<=-2) v(2<a)
are predicates on R.

3. Let N be the set of all natural numbers. Then
p2(n) @ ‘n is an even number’
and
g2(n) : 22" 4+ 1 is a prime number’
are predicates on N.

Predicates themselves are not propositions because they are neither true nor false. They in-
stead define properties of their subjects, which are represented abstractly by the variables they
contain. For example, in the predicate p(y) : ‘y is mortal’, the variable y is the subject and
‘4s mortal’ is its property. The value of a predicate depends on the values of its variables, and
when specific values are substituted for these variables the predicate evaluates to either true or
false, i.e. it becomes a proposition.

Examples
For the predicates defined above we have:

e pi(m) : ‘m <3 =F and
() : (r<=2)v(2<n) =T
but pi(1) : ‘1 <3 =T.

<
<

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 32

e py(12) : ‘12 is an even number’ = T and
q2(2) : 2”4 1isa prime number’ =T, because 22 411=24+1=16+1=17isa prime
number.

Definition (binary predicate)

Let D and L be sets and = and y be variables which take their values from the sets D and
L respectively. Then a binary predicate defined on the sets D and L is any assertive sentence
involving the variables z and y, and is denoted by p(z,y), q(z,y), r(z,y), etc. The sets D and
L are called the domains of the variables z and y respectively.

Examples

1. Let # and y be variables which take values from R (the set of all real numbers). Then
p(z,y) « 'z <y
and
g(@,y) : 2 +yt> 4
are binary predicates defined on R.

2. Let D be the set of all people and = and y be variables taking values from D. Then
pi(z,y) : ‘z and y are roommates’
and
q1(z,y) : ‘z is taller than y’
are binary predicates defined on D.

Definition (predicate)

A predicate is an assertive sentence containing a specific number of variables. It becomes a
proposition when specific values taken from the domains of the variables are substituted in
place of the variables.

A predicate containing n (n > 1) variables is also called an n-ary predicate. 1-ary (unary) and
2-ary (binary) predicates have been defined specifically above.

2.2.2 Truth sets

A set can be defined by simply enclosing the set elements in braces. For instance, the set
S = {2,3,5,7} is the set of prime numbers less than 10. When using symbols, sets are typically
represented by upper case letters and set elements by lower case. A particular number xz may
or may not belong to, or be a member or an element of, the set S. We use the predicate ‘x € S’

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 33

to mean that « is an element of the set S, and the predicate ‘z ¢ S’ to indicate the converse,
i.e. that x is not an element of (or z is not in) S.

Definition (Venn diagrams)

Venn diagrams are a way of representing sets pictorially. Circles represent sets, a rectangle
around the circles represents the Universal set, and shading is used to illustrate the elements of
the sets.

The diagrams are not a complete representation of sets or their relationship, e.g. the size of sets
and their individual elements cannot be represented.

We have mentioned that when values (or elements) are substituted for variables in a predicate
it becomes a proposition, i.e. its value is either true or false. All the elements that make the
predicate a true proposition form one set and the elements which make the predicate a false
proposition form another set.

Definition (truth set)
Let p(z) be a predicate on a set D. Then the truth set of the predicate p(x) is the set of all
elements x of the domain D which make p(z) true.

We denote the truth set of p(z) by P. This is written symbolically as:

P = {zcD|p(x)}

which is read as “P is the set of all in D such that p(z)”. (the vertical bar ‘|’ is read as “such
that”).

2.2.3 Connections of Predicates

We have defined logical operators ~, A, V, —, and = for propositions. Now we define these
operators for predicates.

Definitions
Let p(z) and g(z) be predicates defined on the same domain D.

1. NOT

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 34

The negation of p(x) is the predicate defined on D which is true only for those elements
z of D for which p(z) is false. It is denoted by ~ p(z) and its truth set is denoted by P.

The domain D is thus divided into two parts by the predicate p(z): P and P. These sets
are shown in the Venn diagrams in Figure 1.

D D

T

Figure 1: The truth sets of predicates p(z) and ~ p(z)

2. AND
The conjunction p(z) A g(z) is the predicate defined on D which is true only for those
elements z of D for which both p(z) and ¢(z) are true.

3. OR
The disjunction p(z) V ¢(z) is the predicate defined on D which is true for those elements
z of D for which either p(z) or g(z) or both are true. The truth sets of the disjunction
and conjunction of two predicates are shown in Figure 2.

D D

(/ &

Figure 2: The truth sets of predicates p(z) V q(z) and p(z) A q(z)

4. CONDITIONAL
The conditional p(z) — ¢(z) is the predicate defined on D which is false only for those
elements z of D for which p(z) is true and ¢(z) is false. It is equivalent to the predicate

~ p(z) vV g(z).

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 35

5. EQUIVALENCE
The equivalence p(xz) = ¢(z) is the predicate defined on D which is true for all those
elements x of D for which p(z) and ¢(z) have the same truth value.
The truth sets of the disjunction and conjunction of two predicates are shown in Figure 3.

D D

v &

Figure 3: The truth sets of predicates p(z) — ¢g(x) and p(z) = q(z)

Although we have defined these connectives specifically for unary predicates, the definitions
apply with obvious extension to arbitrary predicates.

2.2.4 Quantifiers

We are often interested in statements which indicate the number of elements for which a par-
ticular predicate (a property) is true. In particular, if p(z) is a predicate on D, we often deal
with the following statements:

e p(z) is true for all values of z,
e p(x) is true for at least one value of z,

e p(x) is true for exactly one value of z.

In logic, we write these statements as Vap(z), Jzp(z) and Flzp(z) respectively.

The symbol V is translated as “for all”, “for each”, or “for every”, and is known as the universal
quantifier sign. The symbol 3 is the existential quantifier sign, and means variously “for some”,
“there exists”, or “for at least one”. The symbol ! is translated as “there exists exactly one”.
The string Vz is called universal quantification, and dx and 3!z are called existential quantifi-
cation and unique existential quantification respectively. The predicate p(x) appearing in such
statements is said to be the scope of the corresponding quantifier.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 36

Predicates, as mentioned above, are not propositions. However the quantifiers change predicates
into propositions. This process is called quantification.

Definition (universal statements)
A universal statement containing a predicate is a proposition that is true if, and only if, the
predicate is true for every value of its variable within the given domain.

Definition (existential statements)

An existential statement of the form Jzp(z) containing a predicate is a proposition that is true
if there is at least one value within the variable’s domain for which the predicate is true. An
existential statement of the form J'zp(x) containing a predicate is a proposition that is true if
there is exactly one value within the variable’s domain for which the predicate is true.

Examples

e Let B be the set of all species of non-extinct birds, and x be a variable such that x € B.
Let g(z) be the predicate ‘x can fly’.

The universal statement of this predicate can then be represented as
Vax q(z) which corresponds to the statement that all species of non-extinct birds
can fly.

It is obvious that Vz g(z) is false since there exist species of birds for which the predicate
is false (ostriches and penguins, for example, are flightless). Thus 3z ~ g(x) is true.

e Let n € N and p(n) : ‘22" + 1 is a prime number’. Check whether the statement Vn p(n)
is true.

We can easily determine that p(1), p(2) and p(3) are true because the numbers 5 (22 +1 =
2241=5),17 (2 +1=2%+1=16+1=17), and 257 (22" +1 =28 +1 = 256+ 1 = 257)
are prime. But from this we cannot say that Vn p(n) is true because we have not checked
all natural numbers. Checking all numbers in this way is impossible because the set
N is infinite. However, the 17" century mathematician Euler found that p(5) is false
(22 +1 = 23241 = 4294967296 + 1 = 4294967297 is not prime). This one case is sufficient
to prove that Vn p(n) is false, i.e. there exists a number m for which p(m) is not true so
p(n) cannot be true for all n. However, we have determined that the predicate Inp(n) is
true by our evaluation of p(1), for example.

e Let ¢ € Z (the set of all integers) and let
p(z) : 222 — 82+ 7 < 0°. Check whether the statement 3xp(z) is true.

We can rewrite the given predicate in the following equivalent forms:
p(z) : 222 -8 +8 -1 < 0 or

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 37

plx) : 22?2 -4z +4)—1 < 0 or
p(z) : 222 -1<0.

From the last, we can easily see that p(2) is true (because —1 < 0), which means that
there exists an integer for which p(z) is true. Therefore, Jzp(z) is true.

e Let n € N, and let
p(n) : ‘nis a prime number’ and ¢(n) : ‘n is an even number’.
Then p(n) A ¢(n) means that ‘n is an even prime number’.

Therefore, 3!n(p(n) A g(n)) and also In(p(n) A g(n)) are true because 2 is the only even
prime number, but Vn(p(n) A ¢(n)) is false because 5 and 7 are odd prime numbers.

2.2.5 Quantification over empty domains

Let p(z) be a predicate defined on a domain D which is empty, i.e. D = {).

Consider the statement Jzp(z).
Jzp(z) is equivalent to the statement ‘there is some element x such that @ € D A p(x)’ which is
false because z € D is false when D = (). That is, we arrive at

Jzp(z) = false when the domain of the predicate is empty.

Now consider the statement Vzp(z).

Vap(x) is equivalent to the statement ‘for every element z, if x in D then p(z) is true’ which can
be written symbolically as ‘c € D — p(x)’. The last statement is equivalent to ‘false — p(z)’
which is automatically true irrespective of the value of p(x). That is, we arrive at

Vap(z) = true when the domain of the predicate is empty.

2.2.6 Negation of quantified statements

As stated above, any quantified unary statement is a proposition, so it can be negated.

Let p(x) be a predicate defined on D.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Classical logic 38

Negating universal statements
The negation of the universal statement Vzp(z) can be formed in two ways:

e The entire statement is negated, i.e. ~ (Vap(z)), which means ‘p(z) is not true for all z’.

e The statement ‘p(z) is not true for all 2’ is logically equivalent to the statement ‘for at
least one z, p(x) is not true’. This is equivalent to Jz(~ p(z)).

These two different form of negation must be equivalent to each other, so we obtain the formula:

~ (Vep(z)) = 3z(~ p(z)).

Negating existential statements
Similarly, the negation of the existential statement Jzp(z) can be formed in two ways:

e The entire statement is negated, i.e. ~ (Jzp(z)), which means ‘there does not exist z for
which p(z) is true’.
e The statement ‘there does not exist x for which p(x) is true’ is logically equivalent to the
statement ‘for all z, p(x) is not true’. This is equivalent to Vz(~ p(z)).
Again, the two forms must be equivalent, so we obtain the formula:
~ (Bap(z)) = Va(~ p(z)).
The formulae
~ (Vep(z)) = 3z(~ p(z)).
and

~ (Bap(z)) = Va(~ p(z)).

are DeMorgan’s laws for quantified statements.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 39

2.2.7 Multiple quantifiers

Free and bound variables

Predicates contain variables which can be substituted by any values of their domain. Quantified
statements, for example Vzp(xz) or Jzp(x), also contain variables, but these variables are not
real variables in the sense that they cannot be substituted by values.

If a variable v is in the scope of a quantifier, Vv or Jv, then it is said to be a bound variable
or bound by the quantifier. On the other hand, a variable which is not in the scope of any
quantifier is said to be free.

Example
In the statement

Va(p(z,y) A q(x))

the variable x is bound and y is a free variable.

This example illustrates that when one of the variables in an n-ary (n > 2) predicate is quanti-
fied, we obtain a new n — 1 -ary predicate. Therefore, we can quantify any of the variables in
this n — 1 -ary predicate, i.e. we can have more that one quantifier in a statement.

Examples

e Let p(z,y) be a predicate, where z € D; and y € Ds. Then we can construct unary
predicates by quantifying one of the variables of p(z,y) for example:

Predicates Domain
q(z) : Vy p(z,y) D,

r(z) : Iy p(z,y) Dy
s(y) : YV p(z,y) D,
t(y) : Iz p(=,y) D,

Therefore, we can write the following statements:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 40

Vzq(z) = Vavy p(z, y) Jzq(z) = 3aVy p(z,y)
Var(z) = Ya3y p(z, y) Jer(z) = Jedy p(z,)
Vys(y) = VyVz p(z,y) Jys(y) = Vz p(z,y)

Vyt(y) = Vy3z p(z,y) Jyt(y) = Fy3z p(z,y)

e Let D = {a,b,¢,d,e}, z,y € D and p(z,y) be a predicate defined by the table

z\yl[[a b ¢ d e
a T T F F F
b F F F F F
C F T T F T
d F T T T F
e F T F T T
Then all the predicates
q(z) : Vy p(z,y),
r(z) : Jy p(z,y),
s(y) : Yz p(z,y),
t(y) : 3z p(z,y)

Therefore, we establish the following propositions:

Vrq(z) = VaVyp(z,y) = F Jzq(z) = IxVy p(z,y) = F
Ver(z) = Yady p(z,y) = F Jer(z) = ey ple,y) = T
Vys(y) = VyvVa p(z,y) = F Jys(y) = Ve p(z,y) = F
Vyt(y) = VyJzp(z,y) = T Jyt(y) = IyFzp(z,y) = T

Observing these propositions shows that

VaVy p(z,y) = YyVe p(z,y),
Jzdy p(z,y) = Jy3z p(z,y),

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 41

but

JzVy p(z,y) # Vy3z p(z,y)

In general, it turns out that the order of the quantifiers of different variables does not influence
the value of a statement with multiple quantifiers if all the quantifiers are the same. But the
value of a statement containing different quantifiers depends on the order of the quantifiers.

Negating statements with multiple quantifiers

Recall that, according to DeMorgan’s laws, the negation of a ‘for all’ statement is a ‘there exists’
statement, and vice versa, i.e.

~ (Vz p(z)) = Jz(~ p(z)).
and
~ (Jz p(z)) = Va(~ p(z)).

Using these formulae we derive the negation of statements with multiple quantifiers. Consider,
for example, the statement

~ VaIy p(z,y)

We first break it down into its logical component parts:

~Vz (3y p(z, y))
Now we negate the outer quantifier using DeMorgan’s laws:
3z ~ (Jy p(,y))
Applying the same operation to the inner quantified statement then yields:

Jz(Vy ~ p(x,y))

Thus we arrive at the equivalence

~Vedy p(z,y) = JaVy ~ p(z,y).

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 42

2.2.8 Expressions of predicate logic

We have defined predicates and quantifiers in previous sections. Now we define propositions and
expressions of predicate logic.

Definition (propositions)
The propositions of predicate logic are intended to represent relationships between objects.

e The truth constants
true and false are propositions.

e The propositional letters

P,Q,R,S P,Q1,Rq,S1, P, ... are propositions.

e If ¢1,co,...,c, are constants, where n > 1, and p is an n -ary predicate, then

pler,ca,y .. yep)
is a proposition.

Definition (expressions)
The ezpressions of predicate logic are built from its propositions according to the following rules:

e Every proposition is an expression.

e If vy, v9,...,v, are variables or constants, where n > 1, and p is an n -ary predicate, then

p(vy,v2,...,0p)
is an expression.

e If F is an expression, then so is its negation

~F

e If 7 and G are expressions, then so are the following connections of them:
FAG
FVG
F—=G
F=gG

e If v is any variable and F is an expression, then
YoF
JoF
JwF

are expressions.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 43

Example
Suppose p is a ternary predicate and ¢ is a binary predicate. Then:

p(x,a,b) and ¢(z,y) are expressions;

Jyq(z,y) is an expression;

p(z,a,b) A Jyq(z,y) is an expression; thus

Va(p(z,a,b) A Jyq(z, y))
is an expression.

Before we can consider the meaning of expressions, we must introduce the notions of bound and
free variables in an expression. We begin with an example.
In the expression

Vz(p(z,y) A Jyq(,y))

there are two occurrences of = in the scope of the universal quantifier Vo both of which are
bound as defined in the previous subsection. On the other hand, although there are also two
occurrences of y, the occurrence in p(z,y) is not within any quantifier of the form Vy or Jy so
it is a free occurrence of y. The occurrence of y in g(z,y) is a bound occurrence because it is
within the scope of the quantifier Jy.

Note that a variable can be within the scope of more that one quantifier. For example, in the
expression

Vz(p(z,y) A (J2Vyq(z,y)))

the final occurrence of = in ¢g(z,y) is in the scope of both the inner quantifier 3z and the outer
quantifier Vz. In this case, we regard = as being bound by the inner quantifier Jx.

We note that renaming any bound variable does not change the value of the statement, so that,
for example the expression

Vz(p(z,y) A (JzVyq(z,y)))

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 44

is equivalent to the expression in which the outermost occurrence of = is renamed z

Vz(p(z,y) A (3zVyq(z,y)))-

Definition (bound and free occurrences)

Let v be a variable and F be an expression of predicate logic. The occurrence of v is bound
in F if it is within the scope of a quantifier in F; it is bound by the innermost quantifier that
contains the occurrence of v within its scope. The occurrence of v is free in F if it is not within
the scope of any quantifier in F.

Example
In the expression

F: Va(p(z,y) A Jyq(x,y, 2))

both occurrences of x are bound by the quantifier Vx. The first occurrence of y is free, while
the second occurrence of y is bound by the quantifier Jy. The occurrence of z is free in F.

Definition (bound and free variables)
The variable v is bound in the expression F if there is at least one bound occurrence of v in F,
and free in F if there is at least one free occurrence of v in F.

Definition (closed expression)

An expression is closed if it has no free occurrence of any variable.

Example
The expression

Vz(p(z,y) A Jyq(y, 2))

is not closed because the occurrence of z is free. On the other hand, the expression

Vz3yp(z,y)

is closed.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 45

2.2.9 Validity of expressions

In predicate logic, we define validity only for closed expressions, i.e. expressions with no free
variables. Any closed expression, as has been shown in the case of binary predicates, becomes
a proposition. Therefore, the definition of validity is the same as it is for propositional logic
expressions.

Definition (valid)
A closed expression F is valid if it is true under every value of its components.

Establishing validity

Here, we do not introduce formal methods for proving the validity of closed expressions of predi-
cate logic. However, we can use informal methods and common sense to convince ourselves that
expressions are valid.

Examples

e Suppose we want to show the validity of the following expression

~ (Vap(z)) = Fz(~ p())-
According to the definition of =, it suffices to show that
~ Vzp(x) and Jz(~ p(x))

have the same truth value, i.e. the first expression is true precisely when the second is
true. Suppose, we have that

~Vap(z) =T
then we have by the definition of negation
Vep(z) = F

The last statement is true (by the definition of the universal quantifier) precisely when
there exists a domain element d such that

p(d) =F

Hence,

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Classical logic 46

Hence,
Jrz ~p(z) =T
This result does not contain the element d taken in the assumption made above. Therefore,
~Vep(z) = 3z~ p(z)
Similarly, we can arrive at
dz ~ p(z) = ~ Vap(z)
From the last two statements we conclude that the expression
~Vzp(r) = Jz ~ p(z)

is valid.

e Suppose we want to show the validity of the expression
F o (Fz(p(z) Ag(e)) = Bzp(z)) A (Fzg(z))
It suffices (by the definition of the connective —) to show that whenever the antecedent
3z(p(z) A q(2))
is true, the consequent
dzp(x) A Jzq(z)

is also true.
Assume that

Jz(p(z) A q(z)) =T
Then there exists a domain element, say d, such that p(d) A ¢(d) is true, i.e.
p(d) Aq(d) =T
Hence (by the definition of A)

p(d) =Tand g(d) =T

Hence,

Jzp(z) = T and Jzq(z) = T

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics 47

From these two statements we get (by the definition of A)
dz p(x) A Jzq(xz) =T
as desired.

e Show the validity of the expression
F o (Vavy p(z,y)) = (Vyva p(z,y))
It suffices (by the definition of the connective —) to show that, if the antecedent
Vavy p(z,y)
is true, then the consequent
Vyvz p(z,y)

must also be true.
Assume that

VaVy p(z,y) = T

Then, for any domain element d the following holds:
Vyp(d,y) =T
Similarly, for any domain element ¢ the following holds
p(d,c¢) = T for any d and any ¢
Therefore it follows that
Va p(xz,c) = T for any ¢

Hence,

Vy(Vep(z,y)) =T

as desired.

3 Set theory basics

A fundamental concept in all branches of mathematics is that of the set, where a set can be
thought of as a simple collection of objects. We have briefly used set theory notation in the
section on Predicate logic (Section 2.2.2).

In this section, we present the basics of set theory.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics

48

3.1 Introduction

Definition (sets and elements)

A set is a collection of objects which can be distinguished from one another. The objects are

called the elements or members of the set.

A set can contain any objects and in particular all the elements of a set need not be the same

kind of object.

Definition (symbols)
The following symbols are traditionally used in set theory:

e The elements
a, b, ¢, a1, by, c1, as, b, ca, ...

e The sets
A’ Ba Ca Ala Bla Cla A2a s

Definition (membership)

The elements of a set belong to the set or are members of the set.

elements of the set and do not belong to the set.

We write the statements

e ‘the element a belongs to the set S’,

e ‘the element b does not belong to the set S’

symbolically as

All other objects are not

a €S
and
b¢S
respectively. The expression a €S is also read as ‘a is an element of the set S’; or ‘a is

contained in the set S’; or simply ‘a is in (the set) S’.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics 49

Similarly, the expression a ¢ S is read as ‘a is not an element of the set S’, or ‘a is not
contained in the set S’ or simply ‘a is not in (the set) S’.

Definition (finite and infinite sets)
A finite set is one which includes only a finite number of elements, and an infinite set is one
which includes an infinite number of elements.

Examples

e The set containing the integers from —1 to 1 inclusive is a finite set because its elements
are the numbers —1, 0, 1.

Some well-known infinite sets are:

e 7 — the set of all integers.

e N — the set of natural numbers, that is all non-negative integers.

Q - the set of rational numbers. The rational numbers are all numbers that can be
expressed as a fraction of the form g, where p is an integer and ¢ is a natural number.
Notice that this set includes all the integers since any integer z can be written as 7. Other
numbers in this set include all proper fractions (e.g. %, %), all terminating decimals (e.g.
0.5, 2.123) and all repeating decimals (e.g. 0.3333...).

Q1 — the set of irrational numbers, that is those numbers that are not rational. This
includes, for example, the numbers 7, e, v/2 and /3.

e R — the set of all real numbers, which consists of all rational and irrational numbers.

Defining sets

We often use the following ways to define a set:

1. Enumeration
In this form, we simply write the elements of the set between braces { }. For example,
A={2, 4, 6, 8} is the set containing the numbers 2, 4, 6 and 8.

As mentioned above, a set is completely defined by the different elements it contains. Con-
sequently, the order in which its elements appear, or the number of times that a particular
element appears has no impact on the set. So, for example,

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Set theory basics 50

A={24,6 8} = {8 4,6 2} = {2 4, 6,8, 2}.

However, there is a difference between a set and the element in the set. For example,
{moon} denotes the set containing only the element moon. Consequently, {moon} #
moon: one is a set containing a single object, the other is the object.

Furthermore, an element can be anything, including another set. For example, {{1}, {2}}
denotes the set whose elements are two sets, one containing only the number 1 and the
other containing only the number 2.

2. Using set comprehension
Often it is difficult or impossible to actually list all the elements of a set explicitly. For
example, the set of all natural numbers from 10 to 200 is simply too large to write in this
way. In such cases we can define the set instead using set comprehension, which basically
defines the set by defining the properties of its elements.

Definition (set comprehension)
Let S be a set and p(z) be a predicate defined on the set S. Then the expression

{vesS|p(v)}

denotes the set of all elements v of S for which p(v) is true.

{v € S|p(v)} is read as “the set of all v in S such that p(v)”.

Examples
{neZ| -2<n<3} is the set of integers between —2 and 3,
including —2; i.e. {—2,-1,0,1,2}

{n € N |10 <n <200} isthe set of natural numbers from 10 to
200 inclusive.

{r e R| —10 <z <10} is the set of real numbers between —10
and 10. This is an open interval, which
means that the endpoints —10 and 10
are not included.

{xr € Z|2*=4} is the set of integers x with the property
that z2 equals 4; in other words, the set

{*27 2}

Definition (the universal set)
The universal set is the largest set within a given universe of discourse; i.e. the set of all the

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Set theory basics 51

elements which make up different sets being considered. Typically, the universal set is repre-
sented by U.

Example
If the universe being discussed includes sets made up of rational numbers, integers and natural
numbers, then the universal set might be defined to be the set of all real numbers.

Definition (the empty set)
The empty set is the set which contains no elements and is generally written as {} or 0.

It may seem that defining a set with no elements is unnecessary. However, the empty set is as
important to problems regarding sets as 0 is to mathematical problems.

Example
The set {x € R |22 = —1} is empty because there are no real numbers whose square equals —1
(because 22 > 0 holds for all real numbers), i.e.

{reR[2?=-1} = {}

3.2 Relationships between sets

Let A and B be arbitrary sets.

Definition (subset)
A is a subset of B, written A C B, if and only if every element of A is also an element of B.

We can symbolically write this as A C B = Va(a € A — a € B).

According to this definition, however, any set A is a subset of itself. Therefore we introduce the
term proper subset.

Definition (proper subset)
A is a proper subset of B, written A C B, if and only if A is a subset of B but A is not equal
to B (in other words, there exists at least one element in B which is not in A).

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Set theory basics 52

Definition (not a subset of)
A is not a subset of B, written A € B, if and only if there exists at least one element e which
is in A but not in B, that is Je(e € A Ae ¢ B).

Definition (set equality)
Two sets A and B are equal, denoted A=B,if ACBand BC A

Definition (superset and proper superset)
A superset is the opposite of a subset. If A is a subset of B, then B is a superset of A, written
B D A. Likewise, if A is a proper subset of B, then B is a proper superset of A, written B D A.

The relationships of two sets, one of which is a subset of the second one, are shown in Figure 4
with a Venn diagram (see Section 2.2.3).

Figure 4: ACBand BD A

The negations of all these properties of sets can be defined similarly, but we omit them here.

Example
Let A={n e N|n <6}, B={1,37T} C={2,4,6} and D = {5,2,1,3,4,6}. Then, for
example, the following relationships hold:

B is not a proper subset of A, ie. B¢ A

C is a subset of A, ie. CC A

C is a proper subset of A,ie. CC A

A and D are equal, i.e. A=D

e A is a proper superset of C, i.e. ADC

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Set theory basics 53

The following theorem and corollary hold for the empty set.

Theorem: The empty set is a subset of every set, that is) C A for any set A.

Proof (by contradiction):
Suppose that § € A. By our definition of ‘not a subset of’, this means

Jz(zelbAz¢A).

However, () has no elements, so z € () is false, and hence z €) Az ¢ A is false. Thus, the
statement Jz(z € 0 Az ¢ A) is false, so the theorem is true.

Corollary: There is only one empty set, i.e. the empty set is unique.

Proof:
Let (; and 0> be sets with no elements. Then, by the above theorem, §; C ()5 and also 0 C 0;.
So, by the definition of set equality 0; = 0s.

3.3 Cardinality and power set

Definition (cardinality)
The cardinality of a set is simply the number of elements in the set. The cardinality of a set S
is denoted by |S| or card S.

By the definition of proper subset, it is clear that if A C B then the set A must have fewer
elements than B if B is finite, which yields the following statement:
A CB=|A| < |B]|

Definition (power set)
The power set of a set A is the set of all subsets of A. Tt is written as P(A) or 24.

For any set A, both {} and A itself are elements of P(A).

For any set A the following equality holds:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics 54

P(A)| =24

Example

If A ={1,2,3} then P(A) = {{}, {1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

3.4 Operations on sets

New sets can be formed from existing ones in a variety of ways. We describe some of these, as
well as other relationships between sets which can be constructed from them, here.

Definition (union)
The union of two sets A and B is the set of all elements which are in either A or B or both. It
is written as A U B.
Symbolically,
AUB={zcU|zec AVzecB}

Note that for any set A the following hold:
AU{}=Aand AUU=U.

Definition (intersection)
The intersection of two sets A and B is the set of all elements which are in both A and B. It
is written as A N B.
Symbolically,
ANB={zcU|zcANzeB}={zcA|zcB}

Note that for any set A the following hold:
An{}={}and ANU = A.

Definition (disjoint)
If ANB = {}, then A and B are said to be disjoint sets. In other words, there is no element
in A which is also in B.

Definition (distributive union and distributive intersection)
The distributive union and distributive intersection of sets can be thought of as being generalisa-
tions of the union and intersection operators to an arbitrary number of sets. Distributive union

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Set theory basics 55

of sets Ay, Ag, ..., Ay, denoted by UL, A4;, is the set constructed by taking the union of all
the elements in all the sets A; (1 < i < n). Thus, an object is an element of the set |J;; 4; if
it is an element of some set A; (1 <i < n).

Distributive intersection of sets Ay, As, ..., A,, denoted by (i, 4;, is the set constructed by
taking the intersection of all the sets A; (1 < i < n). Thus, an object is an element of the set
Nizq A4; if it is an element of all sets A4; (1 <i < n).

Definition (complement)
The complement or absolute complement of a set A, denoted by A (or ~ A), is the set of all
elements that are not in A.
Symbolically,
A={zxcU|z¢ A}

Note that this definition of the complement of a set requires the existence of a Universal set.

Definition (difference)
The difference of two sets A and B, denoted by A — B (or A\B), is the set of elements which
are in A but not in B. This is also known as the complement of B relative to A.

Symbolically,
A-B={zeU|zec ANz ¢B}={zcA|z¢B}

Note that A — B is not equal to B — A in general.
The absolute complement of a set A can now be defined as A = U — A.

Definition (boolean sum)
The boolean sum of two sets A and B is the set A + B consisting of all elements which are in
A or in B but not in both.
Symbolically,
A+B={zcU|(zcArz¢B)V(r¢AANzeB)}=(A-B)U(B—-A)

Note that if the two sets A and B are disjoint then A + B=A UB

The union and intersection of two sets can be represented with Venn diagrams in the same way
as the truth sets of p(z) V ¢(z) and p(z) A g(x) were represented in Section 2.2.3. The difference
and boolean sum of two sets are shown in Figure 5.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Set theory basics 56

& (4

Figure 5: The difference and boolean sum of sets A and B

Definition (ordered pair)
An ordered pair is a pair of objects given in a fixed order. It is written as (a,b) where a is called
the first component and b the second component of the pair.

Definition (product sets)
The product set of two sets A and B is the set of ordered pairs whose first component is taken
from A and whose second component is taken from B:

AxB={(z,y)|z€ ANy € B}

It is also called the Cartesian product, or simply the product of A and B, and A x B is read “A
cross B”.

Examples

1. Let Ube {ne€Z|0<n <11},
A={neU|n<T7},and B={necU|3<n<9}. Then

A={neU|n>T7}

B =1{0,1,2,3,10,11}
AUB={neU|n<9}
ANB={neU|3<n<T7}
A-B={neU|n<3}

B A=1{78,9)
A+B=1{0,1,2,3,78,9)

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics 57

2. Let A = {a,b,c} and B = {1,2,3} then
A x B = {(a,1),(a,2),(a,3), (b 1),(b,2),(b,3),(c,1),(c,2),(c,3)}

3.5 Laws of set algebra

We often need to prove theorems (properties) about sets.

Suppose, for example, we need to prove the equality

AUB=ANB

This can be done as follows:

Let € AUB. Then z ¢ (A UB). Hence, ¢ A and = ¢ B. Hence, z € A and = € B.
Hence, z € (A N B).

Therefore, AUB C AN B.

Now suppose, z € (A N B). Then z € A and z € B.
Hence, 2 ¢ A and = ¢ B. Hence, x ¢ (A UB). Hence, z € A UB.

Therefore, ANB C A UB.

Thus, from

AUBCANB
and

ANBCAUB
we conclude that

ANB=AUB

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics 58

This method of proving theorems is called an element-wise proof.

Set algebra is the branch of mathematics that uses only the laws and logic of algebra to prove
theorems about sets. These laws simplify the study of sets and with them we can prove proper-
ties much more easily than using element-wise proofs.

Some algebraic laws of sets are listed below.

Laws
Let U be a universal set, and A, B and C be given sets. Then the following properties hold:

e Idempotent laws
ANA=A
AUA=A

e Associative laws
(ANB)NC=AN(BNC)
(AUB)UC=AUBUC)

e Commutative laws
ANB=BnNA
AUB=BUA

e Distributive laws
ANBUC)=(ANB)U(ANC)
AUBNC)=(AUB)N(AUC)

e Absorptive laws
AN(AuUB)=A
AUANB)=A

o Identity laws

ANU=A
AU{}=A
An{}={}
AUU=U

e Complement laws
ANA={}
AUA=TU
A=A

U-{)

f-u

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Set theory basics 59

DeMorgan’s laws
AUB=ANB.
ANB=AUB.

Alternative set difference representation
A-B=ANB

Inclusion in union
ACAUB
BCAUB

Inclusion in intersection
ANBCA
ANBCB

Transitive properties of subsets
IfACBand BC C then ACC

Examples (proofs)

e For any sets A and B we have

AUANB)=AUB

Proof:

AUANB) = (AUA)N(AUB) distributive law
= UN(AUB) complement law
= AUB 1dentity law

e Show that
ANBUA)=A
Proof:

ANBUA) = (Au{})n(BUA) identity law
= (Au{})n(AUB) commutative law
= AU({}nB) distributive law
= AuU{} identity law
= A 1dentity law

e Prove that

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Mappings 60

Proof:
(AUB)N((ANB)UB
= (AUB)N((AUB)N(BUB)) distributive law
= (AUB)N((AUB)NU) complement law
= (AUB)N(AUB) identity law
= AU(BNB) distributive law
= AuU{} complement law
= A tdentity law

4 Mappings

A way to introduce a relationship between the elements of two sets is mappings which are widely
used in mathematics and computer science. Therefore, we present the notation of mappings in
this section.

4.1 Introduction

Definition (mapping)
Let A and B be sets. A mapping from set A to set B is a relationship between all elements of
A and some or all elements of B in which each element of A is related to a unique element of B.

More precisely, a mapping can be thought of as a triple: the source is a set of objects; the range
is another set of objects; and the relation is a subset S of the Cartesian product of the source
with the range, such that for each element s of the source there is exactly one element r of the
range such that the pair (s,r) lies in S. Sometimes, such a mapping is referred to as a total

mapping.

Definition (image)

For a mapping from A to B, if s is an element of A (i.e. s € A) and r is the element of B that
is related to s in the mapping, then r is called the image of s under the mapping, and we say
that the mapping maps s to r and denote this by s — 7.

Let m be a mapping from A to B and let a € A. Then the image of the element a under m is
denoted by m(a) and according to the definition of mapping this must be some element of B,
i.e. the following holds: Va (a € A — m(a) € B)

Definition (domain and range)

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Mappings 61

For a mapping from A to B the set A is called the domain and the set B the range of the
mapping.

We denote the domain of a mapping m by dom(m) and its range by rng(m).

Definition (finite and infinite mappings)
A mapping is finite if its domain is a finite set and infinite if its domain is an infinite set.

Defining mappings
We often use the following two ways to define a mapping:

1. Enumeration
We write a mapping by listing its associations between brackets [| explicitly. This is
similar to the enumeration form of a set (see Section 3.1) because a mapping is a set of
unordered associations.

Examples

e m =[A~— 65 B~ 66,C— 67,a— 97,b+— 98, ¢ — 99]
is the mapping which maps A to 65, B to 66, C to 67, a to 97, etc.

Its domain and range are the sets dom(my) = {4, B, C,a, b, c} and rng(my) = {65,66,67,97,98,99}
respectively.

The image of A is 65, and the image of a is 97.

Note that the order in which the associations are listed does not matter. So, the mapping
written above can equivalently be written as:
m1 =[A+~— 65,a— 97, B — 66,b+— 98,C — 67, ¢ — 99]

e For the mapping mg = [2 — true,3 — false,4 — true,5 — false]

its domain and range are dom(ms) = {2, 3,4,5} and rng(ma) = {true, false} respectively.

2. Map comprehension
We can define a mapping using a notation similar to the one for set comprehension based
on the fact that a mapping is a set of associations. The notation

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Mappings 62

[f(s) = g(s) | s € S Ap(s)]

represents the set of associations of the form f(s) — g(s), where f and g are some func-
tions of s, for all s belonging to the set S which satisfy the given predicate p.

Examples
m—-nneZAN(-1<n<1)]=[-1—-10~01— —1]

m—2-n-1lneNA(R<4)]=[0—-1,1—-1,2—3,3—54—7]

It is impossible to define an infinite mapping by enumeration, while it is possible to create an
infinite mapping using map comprehension. For example, the mapping
m—2-n—1|neNA(n>4)
is an infinite mapping because its domain is the set
{neN|n >4}
which is infinite.

Definition (the empty mapping)
The empty mapping is the mapping whose domain is the empty set and which thus contains no
associations. It is represented by [].

For example, the mapping
n—2-n—1/neNA(n<0)]

is the empty mapping because its domain is the set
{neN|n <0}

which is empty.

Properties of mappings

Definition (injective mapping)
A mapping is injective if for each element r of the range of the mapping there is at most one
element of the domain whose image under the mapping is r.

Definition (surjective mapping)
A mapping is surjective if for each element r of the range of the mapping there is at least one
element of the domain which maps to » under the mapping.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Mappings 63

Definition (bijection)

A mapping is a bijection if it is both injective and surjective. Then for each element r of the
range of the mapping there is exactly one element of the domain that maps to r. We also say
that the mapping is bijective or a one-to-one correspondence.

Definition (inverse mapping)
For a bijection m its inverse mapping is the mapping that maps each element e of rng(m) to
the unique element of dom(m) that maps to e. We denote this by m~!. Then

m~! = [m(a) = a|a € dom(m)]

Example

Let B = {a,b,c¢,d},

A ={1,2,3},

A, =1{1,2,3,4,5} and
Ay ={1,2,3,4}, and let

m; =[1— a,2+— b,3+— c¢| be a mapping from A to B,

mg = [1 = a,2 — b,3 — a] also be a mapping from A to B,
m3=[1l—a,2+— a,3+— b4+ ¢, 5+ d| be a mapping from A; to B, and
mg4 =[1—d,2— ¢,3— b4+ a] be a mapping from A, to B.

Then the mapping m is injective but not surjective and hence not bijective; the mapping mg
is neither injective nor surjective, so also not bijective; the mapping mg is surjective but not
injective, so not bijective; and the mapping my4 is both injective and surjective and hence also
bijective.

The inverse mapping of my is mgl =ld—1l,c—2b—3,a—4].

Definition (permutation)

We define the notation of permutations as an example of a mapping, which we then use in our
examples below. A permutation of the positive integers 1,2, ..., n is a bijection from N, to itself
where N, = {i e N|1<i<n}.

A more visual way of representing a permutation is to use a two row table (one row per copy
of N,). The first row is the domain values and the second is the range values of the bijection.
The values in both rows appear in their natural order and straight lines connect each value ¢ to
its image. Two such permutations are shown in Figure 6.

A cycle in a permutation is a sequence of associations in the permutation in which the domain
value of each association, except the first, is equal to the image of the previous association and

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Mappings 64
@000 @6

Figure 6: Permutations

the image of the last association is equal to the domain value of the first association. If there
is an element which is mapped to itself then it is considered as one cycle. A cycle can be rep-
resented by listing only the domain values of the associations in it. We write this list in braces.
For example, the cycles of the mapping m; shown in Figure 6 are (1,3,2) and (4,6,5), and the
cycles of mgy are (1,4,3,6,5) and (2).

So, another way to represent a permutation is using a product of cycles in which we write all
cycles of the permutation without any delimiters. For example, the permutations represented
in Figure 6 can be written as

my = (1,3,2)(4,6,5) and mo = (1,4,3,6,5)(2).

4.2 Relationships between mappings

Definition (mapping equality)

Two mappings my and mso are equal if and only if their domains are equal, their ranges are
equal, and for each element s of the domain mq(s) is equal to mqy(s). We write this simply as
my1 = mo and this is defined symbolically as

(dom(mq) =dom(mz))A(rng(m1) =rng(ma)) AVs(s €dom(mi) — (m1(s) = ma(s)))

4.3 Operations on mappings

Definition (product)

Let m; and ms be two mappings such that the range of m; is a subset of the domain of ma, i.e.
rng(mi1) C dom(mgy). Then the product of the two mappings is the mapping which maps each
element s of the domain dom(m1) to the value which is the image of m1(s) under the mapping
ma, i.e. to ma(mq(s)). It is denoted by mq * mo.

The product of two mappings is sometimes called the composition of the mappings.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Mappings 65

Example
The product of the two mappings m; and mq given above in Figure 6 is mqxmo = (1,6)(2,4,5, 3)
and is illustrated in Figure 7.

Figure 7: The product of two mappings

Definition (power)
Let m be a mapping, the range of which is a subset of its domain, and let n € {i € N |i > 1}.
Then m~n is the n-fold composition of the mapping m.

Example
m1~3 = (1)(2)(3)(4)(5)(6). This is illustrated in Figure 8.

Figure 8: 3-fold composition of a mapping

Definition (override)

The override operator overrides one mapping with another where priority is given to the asso-
ciations in the second operand when the domain values match. It is written my ms where my
and me9 are mappings.

Example
Let mj =[1—3,2—1,3—24—65—46—5]. Thenm; {[2—-3,3—=24—T7=[1~
3,2+—3,3—2,4— 7,5~ 4,6 — 5]. This is illustrated in Figure 9.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Mappings 66

Figure 9: Overriding of mappings

Definition (union)
The union operator combines two mappings whose domains are disjoint, simply building the set
union of the associations in the two mappings. It is written my; U mgy where m; and my are
mappings.

Example
1—-32—-13—2U4—65—46—5=[1—3,2—13—24+—65—4,6— 5]

Definition (domain subtraction)
The domain subtraction operator removes all the associations from a mapping whose domain
values are in a given set. It is written m \ s where m is a mapping and s is a set.

Example
Letm=[1—32—1,3—~24—6,5—4,6+—5]. Thenm\{2,3,4,7} =[1— 3,5+ 4,6 — 5]
which is illustrated in Figure 10.

ONO, ()
@06 6066

Figure 10: Restricting a mapping by a given set

Definition (domain restriction)
The domain restriction operator removes all the associations from a mapping whose domain
values are not in a given set. It is written m /s where m is a mapping and s is a set.

Example
Let m=[1—3,2—1,3— 24— 6,5— 46— 5. Then m /{2,3,4,7} =[2— 1,3 — 2,4 —
6]. This is illustrated in Figure 11.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 67

oNo] o)
@ ®

Figure 11: Restricting a mapping to a given set

Definition (range subtraction)
The range subtraction operator removes all the associations from a mapping whose range values
are in a given set. It is written m © s where m is a mapping and s is a set.

Example
Let m=[1—3,2—1,3—24—6,5—4,6—5]. Thenm ©{2,3,4,7} =2~ 1,4~ 6,6 —
5].

Definition (range restriction)
The range restriction operator removes all the associations from a mapping whose range values
are not in a given set. It is written m © s where m is a mapping and s is a set.

Example
Let m=[1—3,2—13—24—6,5~4,6—5]. Thenm ©{2,3,4,7} =[1+— 3,3+— 2,5+
4].

5 Functions

5.1 Introduction

Let X and Y be sets.

Definition (partial function)
A partial function f from X to Y is a subset of X x Y (the Cartesian product of X and Y)
which satisfies the condition that for each x in X there is at most one y in Y such that (z,y) is

in f.

A given function f is undefined for a value x € X if there is no y € Y such that (z,y) is in f.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 68

Definition (total function)
A partial function is called a total function (or simply function) if for each value z in X there is
exactly one y in Y such that (z,y) is in f.

We present in this section the basic theory of functions.

A function can also be defined as follows:

Definition (function)
A function f from set X to set Y is a relationship between the elements of the sets X and Y in
which each element of X is related to a unique element of Y. It is denoted by f: X — Y.

Note that according to this definition of functions any mapping as defined in Section 4.1 is a
function.

Notation (function application)
We use the notation
f(z)
which is read “f of ©”, to represent the element y of Y which is related to x by the function f.
The variable z is called the argument of the function f.

Definition (image and preimage)
Given an element a in X, there is a unique element b in Y that is related to a and which is
denoted by f(a). We call this b the image of a under f, and a is called the preimage of b.

Definition (domain, co-domain and range)
For a function f from X to Y the set X is called the domain of f and Y is called the co-domain
of f. The range of the function is the set of all images of elements in X.

Definition (two variable function)
Let X, Y and Z be sets.

A function f from X x Y (the Cartesian product of the sets X and Y) is a relationship between
the elements of X X Y and the set Z where each element of X X Y is related to a unique element
of Z. It is denoted by f: X xY — Z.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Functions 69

We use the notation

fz,y)
which is read “f of x and y” or “f of x, y”, to represent the application of f to the pair (z,y).

The variables x and y are called the arguments of the function f.

Definition (multi-variable function)
Let n € N (n > 2) and let Xy, X3, ..., X;, and Y be sets.

A function f from X; x Xy x - - - x X, (the Cartesian product of the sets) is a relationship between
the elements of X; x Xy x --- x X,, and the set Y where each element of X; x X5 x --- x X,
is related to a unique element of Y. It is denoted by f: X1 x Xg x --- x X,, —> Y.

The application of f to the arguments z1,zs, ..., z, is written as
f(xlax% s 7"1:72)-

5.2 Defining functions

Functions can be defined in several different ways:

1. Arrow diagram
If X and Y are finite sets, an arrow diagram depicts a function f from X to Y by drawing
an arrow from each element in X to its image in Y. In this case, two properties must hold
for the diagram according to the definition of functions:

e every element z of X must have an arrow coming out of it.

e No element of X can have two or more arrows coming out of it.

An example of an arrow diagram is shown in Figure 12.

2. Table
If X and Y are finite sets, a two row table can be used to represent a function f from X
to Y. The first row contains all the different values of in X and the second shows the
image of x under f in each case.

Example
A function is defined by the following table:

xHABCabc
y| 656 66 67 97 98 99

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Functions 70

\/

]

Figure 12: A function represented by an arrow diagram

3. Analytical form
When the domain of a function is an infinite set it is impossible to represent the function
using the two methods described above. A more general way of defining a function is to
give a formula defining the result of the function f(z) in terms of the argument x. This
formula is called the analytical form of the function.

Examples

e Suppose a function f is defined by the following table:

z|-2 -1 0 1 2
y[[o 1 2 3 4

Then its analytic form might be f(z) = x + 2 defined on the set {—2,—1,0,1,2}.
e Identity function on a set
The identity function on a set X
iz X— X

is defined by i,(z) = x.

e Absolute value function
is the function f : R — R (denoted by |z|) such that

f(x):{:c if 2 >0

—z ifz<0

e Polynomial function of degree n
is a function f: R — R such that

f(:l?) :a0+a156+a2552+..._|_anxn
where a; (0 < i < n) are real constants.

e Exponential function
is a function f: R — R™ such that

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 71

where R™ = {r € R | r > 0} and a is a real constant such that a > 0 and a # 1.

4. Function machines
Functions can be thought of as machines or computer programs. Suppose f is a function
from X to Y and an input = of X is given. Then f can be imagined as a machine (or
program) that processes z in a certain way to produce the output f(z).

Example

The Hamming distance function was invented by the computer scientist Richard W. Ham-
ming. It gives a measure of the “distance” between two strings of 0’s and 1’s that have
the same length.

Let S = {0,1} and n € N and let S™ be the set of all string of 0’s and 1’s of length n.
Then the Hamming distance function h : S™ x 8™ — N returns, for a pair in S” x S™, the
number of positions at which the two strings of the pair have different values, i.e.

h(s,t) = the number of positions at which s and ¢ have different values.

Suppose n = 6. Then S is the set of strings comprising any combination of six 0’s and
1’s, and we can apply the distance function to two strings in the set S®. For example,

h(110001,110010) = 2

because 110001 and 110010 differ only in the last two positions.

A computer program (or procedure) which evaluates the distance between two such strings
is a function.

5.3 Classification of functions

Definition (one-to-one function)

The function f : X — Y is called a one-to-one function (or injection) if, and only if, any two
distinct elements z; and x5 of X have distinct images under f. This can be stated symbolically
as:

f(x1) = f(z2) = x1 = 29

or equivalently as

Ty # 2 = f(21) # f(22)

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Functions 72

Conversely, a function f : X — Y is not a one-to-one function if there exist distinct elements z;
and x9 in X such that 27 and z3 have the same image under f, i.e. if f(z1) = f(x2) with 21 # z».

In terms of arrow diagrams, a one-to-one function takes distinct points of the domain to distinct
points of the co-domain. A function is not a one-to-one function if at least two points of the
domain are taken to the same point of the co-domain. An example of this is shown in Figure 13.

Figure 13: a. A one-to-one function. b. A function that is not one-to-one

One-to-one functions on infinite sets

To prove a function is one-to-one the method of direct proof is generally used. Consider the
following examples.

Example: Let f: R — R be a function defined by the rule

f(z) =6z —2

Prove that f is one-to-one on R.

Proof: Suppose x1 and x5 are real numbers such that f(z1) = f(z2). (We need to show z1; = z3).
Then
6x1 — 2 =06x9 — 2
Adding 2 to both sides gives
6:61 = 6:62
Dividing by 6 on both sides we then arrive at
T1 = T2
as desired.

Example: Let f: R — R be a function defined by the rule

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 73

f(z) =222 +1

Prove that f is not one-to-one on R.

Proof: Suppose x1 and zo are real numbers such that f(z;) = f(z2). (We need to show z; and
x2 may be different). Then

222 +1 =222 +1
Adding —1 to both sides gives

223 = 223
Dividing by 2 on both sides gives
2 _ .2
I3 =23

Hence, 77 — 23 =0 or (z1 + x2) - (1 — 22) =0

The product is equal to 0 if either the first or the second multiplier is equal to 0, i.e.

r1+x0=0
1,'1—932:0

Hence, we arrive at

r1 — —I9
Ir1 = I9

From the first equation we conclude that if zo # 0 then z7 # z2 (for example, if 2o = 3 then
r1 — —3) .

Hence, f(z1) = f(z2) but 21 # 3, and therefore f(z) is not one-to-one.

Definition (onto functions)
The function f: X — Y is said to be onto (or surjective) if, and only if, each element in Y is
the image of some element of X under the function f, i.e.

f is onto if, and only if, Vy(y € Y — Jz(z € X A f(z) = y)) is true.

Conversely, a function f: X — Y is not onto if there is some y in Y which is not the image of
any z in X, i.e. if Jy(y € Y AVz(z € X A f(x) # y)) is true.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 74

Example
Let f: R — R be a function defined by the rule

f(z) =6z —2

Prove that f is onto on R.

Proof: Let y € R.

We need to show that there exists z € R such that f(z) = y. If such a real number exists, then
6x —2 =y or z = (y+2)/6. xis a real number since sums and quotients (except for division
by 0) of real numbers are real. It follows that f is onto.

Example
Let f: R — R be a function defined by the rule

flz) =222 +1

Prove that f is not onto on R.

Proof: We need to show that there is some value y € R for which there does not exist x € R
such that f(z) = v.
Consider y = —5. Then if f(z) = y for some x we require

2224+ 1= -5 or
2024+ 1= —6 or
2= -3

which has no solution for z € R

Hence, the function f is not onto.

A function f : X — Y can be both one-to-one and onto. In this case for any element z in X
there is a unique corresponding element y = f(z) in Y: for any element y in Y there is some
element = in X such that f(z) = y because f is onto, and there is only one such element x
because f is ome-to-one.

In this case, the function f sets up a relationship between the elements of X and Y in which
each element of X relates to exactly one element of Y and each element of Y relates to exactly

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 75

one element of X. Thus, we give the following definition.

Definition (one-to-one correspondence)
A function is called a one-to-one correspondence or bijection if it is both one-to-one and onto.

An example is shown in Figure 14.

Figure 14: A function which is a one-to-one correspondence

If f is a one-to-one correspondence from a set X to a set Y, then there is a function from Y
to X under which each element y in Y is related to the unique element z in X which is the
preimage of y under the function f. This function is called the inverse function of f.

Definition (inverse function)
Suppose f : X — Y is a one-to-one correspondence. Then the function f~!: Y — X defined
as

f(y) =z if, and only if y= f(z)

is the inverse function of f.

The diagram in Figure 15 shows that an inverse function “sends” each element back to where it
came from.

Finding the inverse function of a function given by a formula
Suppose f(xz) = y is a one-to-one correspondence and is given by a formula. Then it has an
inverse function. To find this function we usually rewrite the formula so as to express x in terms

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Functions 76

Figure 15: A function f and its inverse function f~!

of y.

Example
Let f: R — R be a function defined by the rule

f(z) =6z —2

It has already been shown above that f is one-to-one and onto. Hence f is a one-to-one corre-
spondence and has an inverse function f !. Find the function f!.

Solution: By the definition of f~!

f1(y) = z whenever f(z) =y

But f(z) = 6z — 2. So, we have 6z — 2 = y.
Solving this equation for x, we arrive at

<
o+
o

5.4 Composition of functions

Let g: X — Y and f: Y — Z be functions such that Y; C Y.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Functions 7

Definition (composition of functions)
The composition of functions f and g, which is denoted by f o g, is a function from X to Z such
that

(fog)(z) = f(g(x)) for all z in X.

The diagram in Figure 16 demonstrates the composition of two functions.

X Y Z

fO(3)
=(f-9)(¥)

Figure 16: Composition of two functions

Example
Let g : R — R be defined by g(z) = 22 + 2, and let f : R — R be defined by f(z) = 3z + 4.
Then

(fog)(z) = f(g9(z)) =32 +2)+4=322+6+4=322+10
(go f)(z) =g(f(z)) = 3z +4)% +2 =922 + 24z + 16 + 2 = 922 + 24z + 18.

Function composition satisfies two important properties:

1. Composition with the identity function
Let g be the identity function. Then f o ¢ = f holds for every function f.

2. Composing a function with its inverse
Let f be a one-to-one correspondence. Then

fof land flof

are identity functions.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Relations 78

6 Relations

6.1 Introduction

The term ‘relation’ is used to describe a relationship between one object and another. In the
case we are discussing, the ‘one object and another’ happen to be the elements of sets. For
example, given elements @ and bin R, a < b, a = b, and a® + 1 > b are all examples of the many
legitimate relationships between these two elements.

Definition (n-ary relation)
An n-ary relation R between sets Ay, A, ..., A, is a subset of A1 X Ay X --- X Ap:

R ={(z1,29,...,2p) € Ay X Ay x --- X Ap | p(x1,22,...,2,)}

where n € N (n > 2), and p is a predicate representing the properties of the elements of the
relation R.

n is called the arity of the relation R.

Definition (binary relation)
A relation R of arity 2 is called a binary relation from A, to As. Aj is called the domain and
As the co-domain of the relation. If (z,y) is in R, we denote this by zRy.

Definition (relation on a set)
IfS=A;, =Ay =--- = A, for a relation R, then R is called a relation on the set S.

Examples

e Let A ={1,2,3} and B = {4,5,6}, and let R be a binary relation defined on A x B as
follows:

{(z,9) | y/x € Z}

Then R = {(1,4), (1,5), (1,6), (2,4), (2,6), (3,6)}.

Like functions, binary relations can be represented by arrow diagrams. To create an arrow
diagram for the above example, we create regions for A and B and list the elements of the

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Relations 79

sets as points. Then we draw an arrow from each z in A to each y in B where (z,y) € R

(see Figure 17).
A B
1 4
3 6

Figure 17: A relation represented by an arrow diagram

e Let S={-2,-1,0,1,2}, and let R be a relation on S defined as follows:
{(z,y) |z = —yVa/y=-2}

Then R = {(~2,2), (~1,1), (0,0), (1, -1), (2, —2), (2, —1), (=2, 1)}.

Because the relation is defined on a single set, an arrow diagram for R becomes a directed
graph. Instead of creating two regions and mapping from one region to the other we list
the elements of S as points in a single region and draw an arrow between points which are
related to each other under R (see Figure 18). In such a directed graph the elements of S
are called vertices and the elements of R (i.e. the ordered pairs that are in R) are edges;
the vertices joined by an edge are the endpoints of the edge; an edge with just one end-
point is called a loop. There are 5 vertices and 7 edges, one of which is a loop, in Figure 18.

Figure 18: A binary relation on a set

e Let p(z,y,2) be a predicate on R such that ‘z, y and z are the coordinates of the vertices
of a cube, the ends of one diagonal of which are the points (0, 0, 0) and (1, 1, 1)’, and let
a ternary relation be defined as

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Relations 80

R = {(z,y,2) e R xR xR |p(z,y,2)}

Then R is equal to

{(0,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1)}

6.2 Functions and relations

In what follows in this section, we focus on binary relations on a set S.

According to the definition, a binary relation is a subset of a Cartesian product, and Cartesian
products are defined as sets of ordered pairs. Therefore, binary relations can be defined using
only set theory. We have already defined functions in Section 5.1. Now it is possible to define a
function in terms of binary relations as follows:

Definition (functions in terms of binary relations)
A function f from set X to set Y is a relation with the following two properties:

1. for every element z in X, there exists an element y in Y such that (z,y) € f;

2. for all elements z in X and y and z in Y, if (z,y) € f and (z,2) € f, then y = z; i.e. each
element = in X is related to a unique element y in Y.

It is important to remember that the elements in a relation are ordered pairs, so that x and y
must be used in the correct order. f(z) = y if and only if y is the second element of the pair in
f of which z is the first element.

A relation can also be defined as a function as follows.

Let Bool be the set {true, false}.

Definition (binary relations in terms of functions)
A binary relation on a set S is a function 7 : S x S — Bool such that r(z,y) is true for every
(z,y) € S x S for which z and y are related and false otherwise.

Example
Let S ={-2,-1,0,1,2}, and let R be a relation on S as follows:

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Relations 81

{(y) |z =-yVa/y=-2}

This relation can be written as the following function:

)

r(z,y) =z =—-yVae/y= -2

which is true for each pair in the set

{(*2: 2): (fla 1)a (Oa 0): (1a *1)a (2a *2): (2: *1): (*2: 1)}
but false for all other pairs in S x S.

6.3 Classification of binary relations

Let r be a binary relation on a set S, i.e.
r:S xS — Bool

Definition (reflexive relation)
r is reflexive if and only if r(z, z) is true for every element x in S, i.e. if Vz(z € S — r(z,z))
then r is reflexive.

Definition (irreflexive relation)
r is irreflezive if and only if r(z, x) is false for every element z in S.

Note that r can be neither reflexive nor irreflexive.

Definition (symmetric relation)
r is symmetric if and only if r(z,y) = r(y,) for every z and y in S.

Definition (antisymmetric relation)
r is antisymmetric if and only if r(z,y) and r(y,z) are both true only if x = y for every = and
y in S.

This means that, for an antisymmetric relation on S, only one of r(z,y) and r(y,z) can be true
for all distinct elements z and y in S.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Relations 82

Note that r can be both symmetric and antisymmetric, and r can be neither symmetric nor
antisymmetric.

Definition (transitive relation)

r is transitive if and only if whenever r(z,y) and r(y, z) are both true, r(z,z) is also true for
every x, y and z in S.

In the directed graph representation these properties correspond to the following properties of
the graph:

reflexive: Every vertex has a loop.
irreflexive: No vertex has a loop.
symmetric: If there is an edge from one vertex to another, then

there is an edge in the opposite direction.
antisymmetric: There is at most one edge between distinct vertices.
transitive: If there is an indirect path linking two vertices via
one or more intermediate vertices, then there is also
an edge linking the two vertices directly.

Example
Consider the following relations on Z.
R1 =7ZxZ

Ro={(z,y) €EZXZ |z =y}
R3={(z,y) €ZxZ |z <y}
Ri={(z,y) €eZxZ |z <y}
Rs = {(z,y) € Z x Z | ‘z is divisible by y'}

The table below shows the properties of each of these relations:

Ri R2 Rs; Rs4 Rs
reflexive NV NV
irreflexive Vv
symmetric NV
antisymmetric Vv
transitive vV VoV VvV

Definition (equivalence relation)

A binary relation on S is called an equivalence relation on S if and only if it is reflexive, sym-
metric and transitive.

Example
Let n be a positive integer and let R be the relation defined by

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Relations 83

R={(i,j) €EZxZ|3k(k € ZAk-n=i—j)}

e R is reflexive, since 0 - n =i — i for every i € Z.
e R is symmetric, since if k- n = ¢ — j then (—k)-n = j — i, i.e. if (i,7) € R then (j,i) € R.

e R is transitive.
Proof: Suppose that (i,7) € R and (j, m) € R. Then there are integers k1 and ko such that
ki-n=1—jand ky -n =7 —m. Thus, we have

ki n+ky-n=0G—j)+(—m)or
(k1 + ko) - n = (¢ — m) where ky + ks is an integer.

Hence, (i,m) € R.

Therefore, R is an equivalence relation on Z.

Definition (order relations)
A partial order on S is a reflexive, antisymmetric and transitive binary relation on S.

Elements z and y in S are said to be comparable in a relation R if and only if either (z,y) or
(y,z) is in R.

A partial order on S is called a total order (or linear order) on S if and only if for every xz and
y in S, z and y are comparable.

Example
The relation “less than or equal to” < on N is a partial order.

Proof:

¢ Reflexive: For every i € N, i < is true.
e Antisymmetric: Both ¢ > j and j > ¢ hold only if i = j.

e Transitive: If ¢ < j and 5 < k hold, then ¢ < k holds.

Thus, < is a partial order on N. In fact any two numbers are comparable, therefore < is a total
order.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Relations 84

6.4 Operations on relations

Let Ry and Ry be binary relations from X to Y.

1. Relations are sets of ordered pairs. Therefore, we can define some operations on relations
which are similar to the operations on sets.

e Union
RIURZZ{('ray) GXXY‘(CE,y) ERI\/("L‘ay) €R2}

e Intersection

RiNRy={(z,y) e X xY | (z,y) € R1 A (z,y) € Ra}
e Difference

Ri —Ro={(z,y) e X xY | (z,y) € R1 A (z,y) ¢ Ry}

¢ Complement
R_1 =XxY-— Rl}

2. Inverse (or Converse)
The inverse R~! of a given relation R from X to Y is defined by:
R ={(z,y) eX xY | (y,2) €R}

3. Composition
Let R; be a binary relation from X to Y and Ry be a binary relation from Y to Z.
The composition RioRs of the two relations Ry and Ry is the relation defined as follows:
RioRy = {(z,2) € X x Z | Jy((z,y) € R1 A (y,2) € Ra)}

Example
Let Ry = {(a,a), (a,b),(b,d)} and Ry = {(a,d), (b,c), (b,d),(c,b)} be relations on the set
{a,b,c,d}.

Then Ri0Ry = {(a,d), (a,¢)}.

6.5 Transitive and reflexive closures

Suppose we are given a set S = {a,b,¢,d, e}, and a relation R defined on the set S as follows:

R= {(aa e)a (ea d)a (da C)a (ea C)a (Ca b)}

Consider the directed graph of R (see Figure 19). The given graph is not transitive. What
associations would have to be added to make this directed graph transitive?

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Relations 85

Figure 19: A given intransitive relation

Beginning from the vertex a and working around the graph, we would need to add the edges
(a,d), (a,c), (e,b) and (d,b) to complete the triangles in this graph, the result of which is shown
in Figure 20 (a). What we have done is add associations to the relation R to form a new relation,
which we denote by R™. Thus,

R* = {(a,e),(e,d), (a,d), (d,), (e,¢), (a,), (¢, b), (e,]), (d, b) }

Figure 20: The transitive closure of the relation

Note that R C R*, that is all pairs in R are also contained in R*. However, R™ is still not
transitive. Adding new associations has created new subsets of elements which are not transi-
tive. For example, aRd and dRb, but ~ (aRb). Therefore, more edges must be added to create
a transitive graph, as shown in Figure 20 (b). The new relation which has been created, which
is denoted by R?, is transitive.

The process of creating a transitive relation R? from an intransitive relation R is accomplished by
systematically adding new associations to R. More specifically, we wish to add the least number
of associations possible in order to obtain a transitive relation. The relation created in this way
is called the transitive closure of the relation R.

The transitive closure of a relation R satisfies the following properties:

1. R! is transitive.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 86

2. R is a subset of R?, i.e. R C R

3. If S is any other transitive relation such that R C S, then R* C S, i.e. the transitive closure
R! is the minimal transitive relation containing the relation R.

Definition (reflexive and transitive closure)
Let R be a relation defined on a set S. Then, the reflexive and transitive closure of the relation
R is the relation R* defined on S, as follows:

R* = UnZO R"

where R" are binary relations on S such that

sR% iff s =t
sR™t iff Ju(sR" tu AuRt) if n >0

The following properties hold for these relations:

1. R'=R
2. sR*t iff 3n > 0,3sg,...,ds, € S with sg = s, s, =t, and s;Rs;41 for all i < n.
3. sR*t is reflexive and transitive.

4. If T is any reflexive and transitive relation on S such that R C T, then R* C T'. That is
R* is the smallest reflexive and transitive relation on S that contains R.

7 Recursion

7.1 Introduction

What is Recursion?

Recursion (in mathematics and in programming) is a technique for defining a problem in terms
of one or more smaller versions of the same problem. The solution to the problem is built out
of the results from the smaller versions.

Example
Let n € N. Then the following functions are recursive functions since each of them uses itself
in its definition (or to compute its own value).

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 87

1. The factorial of n
1 ifn=0

':
" n-(n—1! ifn>0

2. The exponential function

1 ifn=0
n = .
a” = { a-a" ! ifn>0 where a is any real number (a # 0).
3. The Fibonacci sequence
1 ifn=0
F(n) =41 ifn=1

Fn—1)+F(n—-2) ifn>2

In mathematics such functions are called recurrences and in programming a routine that calls
itself is termed recursive.

Thus, recursion is the concept of well-defined self-reference. Self-referential definitions can be
dangerous if we are not careful to avoid circularity. “A rose is a rose” is not a recurrence.
Therefore, the definition of recursion should include the word well-defined.

Problems that lend themselves to recursive solutions have the following characteristics:

1. The problem can be redefined in terms of one or more subproblems, identical in nature to
the original problem but in some sense smaller in size.

2. One or more base cases of the problem have direct or known solutions.

3. By applying this redefinition process to ever smaller subproblems, eventually the problem
is reduced entirely to the base cases.

4. The base case solutions can be used in some way to build the solution to the whole problem.

A base case is an instance of the problem whose solution requires no further recursive definition
(or call). It is a special case whose solution you know. Every recursive definition requires at
least one base case in order to be valid. A base case has two purposes:

e It acts as a terminating condition. For example, without an explicitly defined base case a
recursive routine would call itself indefinitely.

e It is the building block of the complete solution of the problem. For example, a recursive
routine determines the final result from the base case it reaches.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 88

Key concepts
When we attempt to construct a recursive solution of a problem we should keep in mind the
following four questions:

1. How can we define the problem in terms of one or more smaller problems?
What instances of the problem can serve as the base cases?

As the problem size diminishes will we reach these base cases?

Ll

How are the solutions from the smaller problems used to build a correct solution to the
larger problem?

It is not necessary or even desirable to ask ourselves the above questions in strict order. For
example sometimes the solution to a problem is easier to envisage if we first ask ourselves what
instances can serve as the base cases and then define the problem in terms of smaller problems
of the same type which are closer to the base cases.

We demonstrate how to construct recursive functions in the next sections.

7.2 If expressions

The recursive definition of functions generally consists of an if statement with the following form:

if (this is a base case)
then solve it directly
else if (this is not a base case)
redefine the problem using recursion
end if

Therefore, we begin by introducing if expressions which we then use in the following examples.

Definition (if expression)
An if expression is an expression of the form

if pred then ezpr! else expr? end

where the predicate pred is used to choose between the evaluation of two alternative expressions
erprl and expr2.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 89

If the predicate pred evaluates to true the expression exprl is evaluated, otherwise the expression
expr? is evaluated. The two expressions ezpr! and expr2 must be the same type, in the sense
that these expressions take values from the same set. This type is also the type of the entire if
expression.

Examples

e The expression
if > 0 then z else —x end

returns the absolute value of a real number z.

e The expression
if n > m then n else m end

returns the greater of the two integers m and n.

If expressions can be nested as follows:

if pred;
then expry
else
if preds
then exprs
else expr;
end
end

where all the expressions expry, expry and exprs should be of the same type.

7.3 Explicit definition of functions

In Section 5.2 the absolute value function was defined as

f: R—=R such that
T ifz >0
flz) = —x ifzx<0

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Recursion 920

The first expression is called the signature (or header), and the second is the expression defining
the result of the function f(z) in terms of the argument x. These two parts of the definition can
be merged into one definition called an explicit function definition. For example, the absolute
value function can be defined using an if expression as follows:

f: R—=>R
f(z) =
if (z>0)
then 2z
else —=z
end
end f

where the variable z is called the formal parameter of f and takes any value from the domain
R.

This style of defining functions is typical in programming languages and it is probably familiar
to the reader. Therefore, we use it in our examples below.

7.4 Factorial function

Problem
The problem is to compute the factorial of a natural number n recursively.

Design
The familiar iterative definition of the factorial of n (or n!) is

nl=n-(n—1)-(n—-2)---1 for n>0
ol=1

We have four questions to answer:

1. How can we define the problem in terms of smaller problems of the same type?

We need to define n! in terms of the factorial of a smaller number:

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Recursion 91

nl=n-(n-1)! forn >0

2. What instance of the problem can serve as the base case? The smallest number for which
we can calculate the factorial is 0. Thus

n = 0 is the natural choice for our base case.
0! =1 by definition.

3. As the problem size diminishes will we reach this base cases?

Since each application of the function reduces the parameter n by 1, and n is non-negative,
we will always reach the base case n = 0 eventually.

Now, we define the function factorial as follows:

factorial : N — N
factorial(n) =
if (n=0)
then 1
else nx factorial(n — 1)
end
end factorial

4. How is the solution from the smaller problem used to build a correct solution to the larger

problem?

The result returned from the call to factorial(n—1) is multiplied by n to obtain factorial(n).

As you can see, the recursive function directly mimics the above recursive definition. This sim-
ilarity between definition and implementation is a principal attraction of recursion.

7.5 Tracing a recursive function

Doing a trace by hand of multiple calls to a recursive function (for one or two simple examples)
can be helpful in understanding how a recursion works. We note that it is less useful when
trying to develop a recursive function (or algorithm).

In Table 1 a trace of the events in the evaluation of factorial(3) is shown. We write all the
events for a particular call to the function factorial(n) in the same column. Here, “—” denotes
entry to and “—” denotes exit from the function call named at the head of the column. (Recall

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 92

that we use T instead of ¢rue and F instead of false.)

factorial(3)
—-3=0F
result is 3 * factorial(2)
—-2=0F
result is 2% factorial(1)
—-1=0F
result is 1% factorial(0)
—-0=0T
result is 1

— return(1)
result is 1 x 1
+ return(1)
result is 2 x 1
— return(2)
result is 3 * 2
— return(6)

Table 1: Tracing the function factorial

The number 6 is returned to the calling environment. Note that the multiplication operation is
performed after the call to factorial(n — 1) returns a value.

7.6 The greatest common divisor

The greatest common divisor (gcd) of two integers is the largest integer that divides them both.
We recall that m mod n is the remainder of m divided by n; for example, 5 mod 2 = 1,
3modb5=3,4mod 2 =0, 2 mod 2 =0, etc.

Problem
The problem is to calculate the gcd of two non-negative integers m and n recursively.

Design
Euclid’s algorithm for finding ged(m, n) can be defined recursively as follows:

m ifn=20
ged(n,m modn) ifn>0

ged(m,n) = {

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Recursion 93

Is this definition sufficient to be implemented as a recursive function? We consider the four
questions again.

1. Clearly ged(m,n) has been defined in terms of a problem of the same type, but
is ged(n, m mod n) smaller in size?

The value of (m mod n) lies in the range 0,1,...,n — 1. In other words, (m mod n) is
always less than n. Thus, if m > n at the start, then ged(n, m mod n) is a smaller problem
than ged(m,n).

If m < n at the start, then (m mod n) = m and the first recursive step ged(n, m mod n) is
equivalent to ged(n,m). This has the effect of exchanging the parameter values m and n.
So after the first call we are back in the situation where the first parameter is greater than
the second. Therefore, after the second recursive step ged(n, m mod n) would be smaller
than the original problem.

2. If n = 0 then ged(m,n) = m by the definition of the function. So, our base case is when
n = 0.

n = 0 holds if and only if (m mod n) = 0 which means that n divides m.

3. As the parameters m and n decrease with every call (except maybe the first call as men-
tioned above) and 0 < (m mod n) < n we are sure to reach the base case (m mod n) =0
eventually.

Now, we define the function gcd as follows:

ged: NxN —> N
ged(m,n) =
if (n = 0)
then m
else ged(n, m mod n)
end
end gcd

Note that this function returns 0 if both parameters are equal to 0. Thus this case should
be explicitly considered in the calling environment.

4. How is the solution from the smaller problem used to build a correct solution to the larger
problem?

In this function the result from the smaller ged(n, m mod n) is the direct solution to the
larger problem ged(m,n). All the function has to do is find the solution of the base case
and return it unchanged until it reaches the original problem.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 94

In Table 2 we show a trace of the events in the evaluation of ged(18,48).

ged(18,48)
—48=0F
result is gcd(48,18)
—-18=0F
result is ged(18,12)
—12=0F
result is ged(12,6)
—-6=0F
result is ged(6,0)
—-0=0T
result is 6
+ return(6)
result s 6
+ return(6)
result s 6
— return(6)
result s 6
— return(6)
result s 6

— return(6)

Table 2: Tracing the function ged

The number 6 is returned to the calling environment.

7.7 Intermediate recursion example

Let Nj be the set {i € N | n > 1} and let n € N; be a given number.

Problem
A scientist wishes to make a safe chain of length n out of plutonium and lead pieces under the
following conditions:

e No two plutonium pieces can be next to each other.
e Pieces of the same element are indistinguishable.
e There are at least n pieces of plutonium and n pieces of lead.

e Order is significant, i.e. the chains lead-plutonium and plutonium-lead, for example, are
considered to be two different chains.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Recursion 95

The problem is to compute recursively how many ways we can construct a safe chain of length n.

Design

1. How can we define the problem in terms of one or more smaller problems of the same type?

There are two classes of safe chains: chains that end with a lead piece, and chains that
end with a plutonium piece.

Let ¢(n) = the number of safe chains of length n,
I(n) = the number of safe chains of length n ending with a lead piece, and
p(n) = the number of safe chains of length n ending with a plutonium piece
be functions on Nj.

Then, it is clear that c¢(n) = I(n) + p(n).

A safe chain of length n that ends with a lead piece is simply any safe chain of length n —1
with a lead piece tacked onto the end. Therefore,

I(n) =c¢(n—1)

A safe chain can end with a piece of plutonium if and only if the piece before it is a lead
piece. That is, a safe chain of length n that ends with a plutonium piece is a safe chain of
length n — 1 that ends with lead. Therefore,

p(n) =1l(n — 1) = ¢(n — 2) (by substitution from above)
So, we arrive at
c(n) =1U(n) +pn) =c(n—1)+c(n —2)

This recursive relation introduces a new point: there may be cases where we solve a
problem by solving more than one smaller problem of the same type.

2. What instances of the problem can serve as the base cases?
In this case, we should be careful to define the base cases. If we simply say that ¢(1) is
the base case then what happens when ¢(2) is called?
c(2) = ¢(1) + ¢(0), but ¢(0) is undefined, which makes ¢(2) undefined. Therefore, it is
necessary to give ¢(2) an explicit definition, i.e. to make it a second base case. Thus, the
base cases are:

¢(1) = 2 because there are chains that consist of a single piece of lead or plutonium.

¢(2) = 3 because there are chains that consist of pieces: lead-plutonium, plutonium-lead,
and lead-lead.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 96

3. As the problem size diminishes will we reach the base cases? Since n is a positive integer
and each call to the function reduces the parameter n by 1 or 2, we will always reach the
base cases n =1 and n = 2.

The function can be defined as follows:

c: Ny = N
e(n) =
if (n=1)
then 2
else if (n =2)
then 3
else ¢c(n — 1) +¢(n —2)
end
end
end c

4. How are the solutions from the smaller problems used to build a correct solution to the
larger problem? The recursive step adds the results from the two smaller problems to
obtain the solution to the larger problem.

7.8 Advanced recursion example

The Towers of Hanoi problem is a classic case study in recursion. It involves moving a number
of different size disks, stacked on a peg in order of decreasing size, from one tower to another
using a third tower as an auxiliary under the constraints that only one disk may be moved at
any time and a larger disk can never be on top of a smaller disk. Legend has it that at the
creation of the world, the priests of the Temple of Brahma were given this problem with 64 disks
and told that when they had completed the task the world would come to an end.

Problem
Move n disks from peg A to peg C, using peg B as needed, according to the following rules:

1. Only one disk may be moved at a time.
2. This disk must be the top disk on a peg.

3. A larger disk can never be placed on top of a smaller disk.

Design

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 97

1. How can we define the problem in terms of one or more smaller problems of the same type?

The key to the problem is not to concentrate our attention on the first step (which must
be to move the smallest disk from A to somewhere) but on the hardest step, i.e. moving
the bottom disk to peg C.

There is no way to move the bottom disk until the top n — 1 disks have been moved.
Furthermore they must have been moved to peg B to allow us to move the bottom disk to
peg C.

We then have n — 1 disks on peg B which must be moved to peg C using peg A (which is
free at this moment).

So the problem “move n disks from peg A to peg C using peg B’ is equivalent to the
following sequence of subproblems:

e move n — 1 disks from peg A to peg B using peg C
e move the n’th disk from peg A to peg C.
e move n — 1 disks from peg B to peg C using peg A

Notice that the size of the Towers of Hanoi problem is determined by the number of disks
involved. This implies that we have redefined the problem in terms of 3 smaller problems
of the same type.

2. What instances of the problem can serve as the base cases?
If n = 1 then the problem consists of moving 1 disk from a given peg to another, which
we can solve immediately.

3. As the problem size diminishes will we reach the base case?
Since each call to the function reduces the parameter n by 1, and n is positive, we always
reach the base case n = 1.

4. How are the solutions from the smaller problem used to build a correct solution to the

larger problem?

When all the three smaller problems are finished the larger problem is completed.

To define a recursive function let Peg be the set of three pegs, Tower be a set of well-defined
towers in the sense that any tower consists of three pegs with disks stacked smaller ones on
larger ones in some way, and let

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Recursion 98

take_put : Peg x Peg x Tower — Tower

be a function which moves the top disk from one peg to another in a given tower. Then we can
define the function which moves n disks from peg; to pegs using pegs in the tower as follows:

move : N X Peg X Peg x Peg x Tower — Tower
move(n, from, to,use,t) =
if (n=1)
then take_put(from,to,t)
else
move(n — 1, use, to, from,
take_put(from,to,
move(n — 1, from, use, to,t)))
end
end move

How long will it take to move the complete tower or for the world to end? To answer this
question, let M(n) be a function representing the number of moves the recursive function move
requires to move an n-disk tower. We define this function recursively.

The base case should be n = 1. A single disk is moved directly, i.e. M (1) = 1. According to the
definition of the function move above, we see that

Mmn)=2Mn—-1)+1 n>1.

Therefore the number of moves required is M (n) = 2" — 1.

7.9 A final word

In this section we have presented recursion as a method for defining problems. We have not con-
sidered the recursive solution of problems or how recursion is actually implemented on a machine.

Recursion is a very powerful tool for constructing computer routines that otherwise can be quite
complex, particularly when the problem is already defined in recursive terms. For such problems
recursion can lead to solutions that are much clearer and easier to modify than their iterative
counterparts.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Induction 99

However, such recursive definitions do not guarantee that a recursive routine is the best way
to solve a problem. Depending on the implementation available, recursion can require a sub-
stantial amount of runtime overhead. Thus, the use of recursion illustrates the classical tradeoff
between time spent constructing and maintaining a program and the cost in time and memory
of executing that program.

We consider the questions of when the use of recursion is appropriate for computing and when
it is not to be beyond the scope of this paper and so do not discuss them here.

8 Induction

8.1 Introduction

Scientific discovery often arises from the recognition of a pattern. There are two main aspects
of inquiry in science whereby new results can be discovered:

1. deduction, and

2. induction.

In deduction we accept certain statements as premises and axioms and deduce other statements
on the basis of valid inferences.

Induction is the process of discovering general laws by observation and experimentation. In
induction we arrive at a conjecture for a general rule by inductive reasoning and prove it by
verifying.

8.2 Inductive definitions

Let S be an infinite set to be defined. Then an nductive definition of S consists of the following
three components.

1. Base clause (or Basis) establishes that a finite number of particular objects are elements
of the set S.

2. Inductive clause (or Induction) establishes a way to obtain a new element of S from
some of the previously defined elements.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Induction 100

3. Extremal clause asserts that nothing else is in the set S other than elements obtained
by applying (1) and (2).

The extremal clause can take various forms:

e An object is an element of the set S if and only if it can be deduced to be so using only a
finite number of applications of the base and inductive steps.

e The set S is the smallest set which satisfies the base and inductive steps.

e The set S is the set which satisfies the base and inductive steps but which has no proper
subset which satisfies them.

e The set S is the intersection of all sets which satisfy the properties specified by the base
and inductive steps.

Sometimes the extremal clause is left implicit. The recursive definition of a problem (see Sec-
tion 7.1) is an example of inductive definitions.

Below we give a more precise definition.

Definition (inductive definition)
Let S be an infinite set to be defined, and let n and m be finite natural numbers. An inductive
definition of S is a definition with the following three properties:

1. Base cases: Objects by, b, ..., b, are elements of the set S, i.e. b; € S for all 7 such that
1<:<n

2. Constructor functions: The functions
g1:S—S
g2:S—S

gm S — S
establish ways to obtain new elements from some of the previously defined elements of the
set S.

3. Extremal clause asserts that nothing else is in the set S other than elements obtained
by applying (1) and (2).

Examples

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Induction 101

e Suppose that the universe is the set IN. Then the set E of even integers can be defined
inductively as follows:

1. Base case: 0 isin E; i.e. 0 € E.

2. Constructor functions: The functions g;(n) = n — 2 and g2(n) = n + 2 both generate
even integers. That is, if n is in E then g;(n) € E and g2(n) € E.

3. Extremal clause: No integer is in E unless it can be shown to be so by a finite number
of applications of clauses (1) and (2). We write this symbolically as follows:
Vec E(e=0VidneE(e=g1(n)Ve=ga(n)))

e Consider the Fibonacci sequence of numbers:
1,1, 2, 3, 5,8, 13, 21, 34, 55, ...
The first two members of the sequence are both 1, while each succeeding member is the
sum of the two members immediately preceding it.

Let’s define this sequence inductively. It is more convenient if we begin numbering our
sequence at 0.
1. Base cases: F(0) =1 and F(1) = 1 are both members of the sequence.

2. Constructor function: Now we consider the other members. To get a new member
(e.g. the (n+1)th member) we define a constructor function as follows:

F(n)=F(n—1)+F(n—2) foralln > 2

This is a recurrence because F' is defined in terms of itself.

3. Extremal clause: All Fibonacci numbers are obtained by applying (1) and (2).

8.3 Proof by induction

The concept of induction also provides powerful techniques for proving assertions of the form
‘forall = p(z)’, where p(z) is a predicate and the universe is an inductively defined set (e.g. the
set of natural numbers).

A proof by induction consists of two steps which correspond to the base and inductive clauses
of the definition of the universe S respectively.

1. Base step establishes that p(x) is true for every element x specified as a base case in the
base clause of the definition of S.

2. Inductive step establishes that p(x) is true for each element z constructed by the con-
structor functions of the definition of S, assuming that p(y) is true for all elements y used
in the construction of z (this is called the induction hypothesis).

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Induction 102

Since the extremal clause in the definition of S guarantees that all elements of S are constructed
using only the base cases and the constructor functions, p(z) holds for all elements of S.

Example
Let A be a set which contains only the left and right square brackets, i.e. {[,]} and let S be a
set of strings over A such that

1. Basis: [] is an element of S.

2. Induction: If x and y are elements of S, then
[x] and zy (i.e. the concatenation of the two strings) are elements of S.

3. S consists of all strings which can be constructed by a finite number of applications of (1)
and (2).

Problem: Let I(x) denote the number of left parentheses in some element = of S, and let r(z)
denote the number of right parentheses in x.

Prove that I(z) = r(z) for all z € S.

Proof by induction

1. Basis: ¢ =[] in S.
Since l(z) = 1 and r(z) = 1, I(z) = r(z) holds for the base case.

2. Induction: Assume that I[(z) = r(z) and I(y) = r(y) for and y in S. Then
Constructor 1: Consider [z] which is in S.
I((z))=1l(z)+1and r((z))=r(z)+1
By induction hypothesis I(z) = r(z), so I(z) + 1 = r(z) + 1.
Hence I((z)) = r((x)) holds.

Constructor 2: Consider xy which is in S.
l(zy) = U(z) + U(y) and r(zy) = r(z) + r(y)
By induction hypothesis I(z) + I(y) = r(z) + r(y).
Hence [(zy) = r(zy) holds.

Therefore, I(z) = r(z) holds for all z in S.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Induction 103

8.4 First principle of mathematical induction

Let p(n) be a predicate on N.

Definition (first principle of mathematical induction)
The first principle of mathematical induction is an inference rule of the following form:

if p(0) AVE (p(k) — p(k + 1)),
then Vn p(n)

Proof technique

1. Basis: Show that p(0) is true, using any appropriate proof technique.

2. Induction: Let k be an arbitrary element of N. Assume that p(k) is true (this is the
induction hypothesis) and show that p(k + 1) is true.

Example
1 2
Prove that S(n Zz = (74_))

Let p(n) be the predlcate stating that the formula is true for n.

Proof by mathematical induction

1. Basis: Since S(0) = 0% = 0 and (0(0 + 1)/2)% = 0, p(0) is true.

KRN

k
2. Induction: Assume that p(k) is true, that is s(k) = > i° = (5

1=0
Now we show that p(k + 1) is true.

Observe that S(k + 1) = S(k) + (k + 1)3. Using the inductive hypothesis, we evaluate

S(k+1) S(k) + (k+1)
(k+1)/2)2 + (k+1)3
(k/2)% + (k +1))
k2/4+k+1)

(
(
(k2 + 4k +4)/4
(
(

k
k+
k +
k
k k+2)2/4
k+2)/2)?

+
+

1)?
1)
1)
1)
(k+1

(
(k +
(k +
(
(
(

2
2
2
)

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Induction 104

We have arrived at S(k + 1) = ((k + 1)(k + 2)/2)? which shows that p(k + 1) is true.

Therefore, the formula holds for any n € N according to the first principle of mathematical
induction.

8.5 Second principle of mathematical induction

Let p(n) be a predicate on N.

Definition (second principle of mathematical induction)
The second principle of mathematical induction is an inference rule of the following form:

if Vn (VEk (k < n Ap(k)) — p(n)),
then Vn p(n)

Intuitively, for an arbitrary n if we can show that p(n) is true from the fact that the predicate
p is true for all k& (k < n) (this includes the base cases also), then we can conclude that the
predicate p is true for all n.

Proof technique
Let n be an arbitrary element in N.
Assume that p(k) is true for every k¥ < n and show that p(n) is true.

Example
Any integer n > 2 can be written as a product of primes.

Proof by mathematical induction
Let p(n) be the predicate ‘n can be written as a product of primes’.
Assume that p(k) is true for every 2 < k < n. Then we show that p(n) is true.

The proof is by cases:
Case 1: n is a prime.
Then n is a product of one prime, namely itself, i.e. p(n) is true.

Case 2: n is not a prime.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Induction 105

Then n must have a factor ¢ which satisfies 2 < i < n.

So we can write n = i - j where j also satisfies 2 < j < n

By the induction hypothesis, both i and j can be written as products of primes.
Therefore, n can be written as a product of the products of these primes, i.e. p(n) is true.

In both cases, p(n) is true, so p(n) is true for all n > 2.

8.6 Set induction

Let Elem be a set or a type. A set of elements of this type, denoted by Elem-set, can be
inductively defined as follows:

1. Base case: The empty set is a set of type Elem-set.

2. Constructor function: A function
add : Elem x Elem-set — Elem-set
add(e,s) = {e} Us
end add
constructs a new set from some previously defined set by adding a given element to it.

3. Induction axiom: (p({ }) A ((e ¢ S A p(S)) = p(add(e,S)))) = VSp(S)
(where S is a variable of type Elem-set) holds for all predicates p defined on Elem-set.
Note that the hypothesis e ¢ S in the induction step, which ensures that the element e is
not already in the set S, can be assumed without loss of generality because if e is already
in the set the implication reduces to p(S) = p(S) which is automatically true.

Example

The cardinality |s| of a finite set s can be defined as follows:

1. Base case: [{ }| =0.

2. Induction: |add(e,s)| =|s|+ 1 (e & s)

Prove that |s; U sa| = [s1] + |s2]| — |s1 N s2| holds for any finite sets s; and ss.

Proof by induction: Let s; be an arbitrary fixed set. Then we prove that
|81 U sa| = |s1] + |s2] — |s1 N s2| holds for any finite set s5.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Induction 106

L. Base case: [s1U{}| = [s1] and |s1|+|[{}[= |s1 N {}| = [s1|+ [{} = {}] = [s1]+0-0 = [s].
Hence the equation holds in the base case.

2. Inductive step: Let s be a set for which |sq U sg| = |51| + |sa] — |s1 M s2| holds (this is the
inductive hypothesis), and let s, be a set such that s, = add(e, sy) where e ¢ sy, so that
|sy] = |so] + 1.

. . ! !
Now consider the expressions s; U s and s1 N s,.

s1 U s’2
= s1 Uadd(e, s2) by substitution
= s1U{e}Uss by substitution
{e} Us1 U s by the commutative law

= add(e,(s1 Usa)) by substitution

Similarly,
s$1 N s’2
= 1 Nadd(e, s2) by substitution
= s1N({e}Usa) by substitution

= (s1N{e})U(s1Ns2) by the distributive law

In order to evaluate the last expressions in these two cases, we need to know in the first case
whether or not e € (s; U s2) and in the second whether or not e € s;. However, we know by
the induction hypothesis that e ¢ sa, so e € (81 U s2) if and only if e € s;. We consider the two
cases separately.

Case 1: Suppose that e € s1, and hence also e € (s1 U s2). In this case the following relations
hold:

s1 N {e} = {e}

add(e, (s1 U s3)) = s1 U 89

The first of these implies s1 N 312 = add(e, s1 N s3), and since e ¢ s; N sy because e ¢ s, this in
turn implies |s1 N sy| = |51 N sp| + 1

Similarly, the second equation implies s; U s, = 51 U 59, 50 that [s1 U sy = |51 U so].
So, we can write the following:
1] + [sa] = |51 59|

= |s1|+ (Is2] +1) — (st Nsa| +1) by the above
= |s1]| 4+ |s2] —|s1 N s2|

= |s1Us9| by the inductive hypothesis
!
= [s1U s, by the above
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Introduction to propositional modal logic 107

So the equation holds in this case.

Case 2: Now suppose that e ¢ s1, and hence also e ¢ (s1 U s2). In this case, s;1 N {e} = { }, so,
from above, s; Nsy, = { } U (51 N s2) = s1 N sy. Also, [s1 U s,| = |add(e, s1 U s2)| = |s1 U sa| + 1.

So, we can write the following:

[s1] 4 [so] —[s1 N sy
= |s1| + (Is2] + 1) — |s1 Ns2| by the above
= ‘51‘+‘52|*‘51ﬂ82‘+1
|s1Usso|+1 by the inductive hypothesis

= sy U sy by the above

So in this case we have also arrived at
s1Usy| = [sa]+ [so| —[s1 N8y
In other words the equation
|81 U sa| = |s1] + |s2| — [s1 N s2]

is proved.

9 Introduction to propositional modal logic

9.1 Modal formulae

Let @ be a countable set of atomic formulae (or propositional variables) and Fma(®) be the set
of all formulae generated from ®.

Definition (symbols)
The formulae of modal logic are made up of the following symbols:

e The constant
— (falsum or bottom)

e The symbols
O (boz) and — (implies)
(— binds more strongly than —)

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 108

e The atomic formulae letters
b,q,7,pP1,491,71,P2,q92, -

e The formulae letters A, B, A;,B;, A", B, ...

Definition (modal formula)
Formulae are formed according to the following rules:

e p is a formula for all p € ®.
e — is a formula.
e If A and B are formulae, i.e. if A € Fma(®) and B € Fma(®), then
A—B
is a formula, i.e. A — B € Fma(®).
e If Ais a formula, i.e. if A € Fma(®), then
OA

is a formula.

OA can be variously read as:
It is necessarily true that A.
It is known that A.
It will always be true that A.
It ought to be that A.
It is believed that A.
After the program terminates, A.

Note that this definition of formulae is an inductive definition.

Other derived connectives

The following abbreviations define other connectives in terms of the symbols O and — as follows:

Negation: ~ A is A——

Verum (or top): T is ~—

Disjunction: A1 V A2 1S ~ Al — A2
Conjunction: Al NAy is ~ (A =~ Ay)
Equivalence: A=Ay is (A1 = Al) AN (A2 — Ay)
“Diamond”: CA s ~O~A

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 109

(see Section 2.1.8 for negation, disjunction and conjunction)

In general, & A means ‘it is sometimes true that A’. For example, & A means under each of the
above reading of O as follows:

It is possibly true that A.

It is known that A sometimes.

It will sometimes be true that A.

It ought to be that sometimes A .

It is believed that sometimes A.

There is some execution that terminates with A true.

Examples
The following are all formulae of modal logic:

0A— A

0A — 0OOA

S —

04 = OA

OAvO~A

0(A— B) —» (DA — OB)
CANOB — O(ANB)
O(0A— A) - UOA

Subformulae

The finite set Sf(A) of all subformulae of a formula A (i.e. A € Fma(®)) is defined inductively
as follows:

: {-}
3. Sf(A) = {Al — Az} U Sf(Al) U Sf(Az) if Ais A — Ay

9.2 Schemata and substitution

Definition (schema)
A schema is a collection of formulae all having a common syntactic form.

For example, by the schema

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 110

04— A
we mean the collection of formulae
{OB — B | B € Fma(®)}

The notion of a schema can be made more precise by considering uniform substitution, as follows.

Let A and B be any formulae, and let p be an atomic formula.

Definition (uniform substitution)
The uniform substitution (or total substitution) of B for p in formula A is the procedure of
replacing each and every occurrence of p in A by B (see Section 2.1.9).

Definition (substitution instance)
A formula A’ is called a substitution instance of a formula A if it arises by simultaneous uniform
substitution of some formulae for some of the atomic formulae of A.

Thus, if there exist some finitely many atomic formulae pq,...,p,, and formulae By,..., By,
such that A’ is the result of simultaneous uniform substitution of B; for p; for all 1 < i < n in
A, then A is a substitution instance of the formula A.

Let 34 be the set of all substitution instances of A. Then a schema may be defined as a set of
formulae which is equal to ¥ 4 for some formula A.

Example
If B is the formula

Op — p where p € ®

then X g is the set of formulae which was defined above as “the schema OA — A”.

9.3 Frames and models

Definition (frame)
A frame is a pair consisting of a non-empty set S and a binary relation R on the set S. It is

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Introduction to propositional modal logic 111

denoted by F = (S, R) where RC S x S.

Examples

e Time frame: Let S be a set of moments of time and let sRt mean ‘t is later that s’.

Then F = (S, R) is a frame. In this frame OA means “at all future times A” and CA
means “at some future time A”.

e Program states: Let S be the set of all possible states of a computation process with a
program and let sRt mean ‘there is an execution of the program that starts in the state
s and terminates in the state ¢’. Then OA means “every terminating execution of the
program makes A true” and A means “there is some execution which terminates with A
true”

Definition (model)

A ®-model or a model on a frame F = (S, R) is a triple (S, R, V) where V is a function such
that V : & — 29 We denote this by M = (S, R, V).

In a model M = (S, R, V), the function V assigns to each atomic formula p € ® a subset V(p)
of S. Informally, V(p) can be thought of as the set of points at which p is true.

Definition
The relation ‘A is true (or holds) at a point s in a model M’, denoted by

M ‘:S Aa
is defined inductively as follows:
M=sp iff seV(p)
M s — (i.e. — is false in any model)
M =5 (A1 = Ay) iff (M =5 Ay) implies (M =5 As)
M =, 04 iff Vvt e S(sRt implies M |=; A)

According to this definition OA is true at the point s in a model if and only if A is true at all
the points related with the point s in the model.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Introduction to propositional modal logic 112

Examples

(a). Prove that M =5 ~ A iff M 5 A (or ~ (M =5 A))

Mg~ A
if ME;(A—) by abbreviation
iff M =; Aimplies M |=5, — by the definition
= M =, A implies false by definition
— A~ (ME, 4
= M A

(b). Calculate the truth condition for A A B.

M=, ANB
if MEs~(A—~DB) by abbreviation
if ~(M =5 (A—~ B)) using the result of

example (a)
iff ~ (M s A implies M =, ~ B) by the definition
iff ~ (M = A implies ~ (M |=5 B)) wusing the result
example (a)
= MEAANMEB by substitution

We arrive at

MEsAANB iff M=s A N M=, B.
(c). Prove that Vs(M |=5 T) is true.

M ‘:3 T
iff Mg~ — by abbreviation

iff ~(MEs—) by the ezample (a)
— 18 false in any model, thus

= true

That is, T is true in any model.

(d). Work out the truth condition for M |=, (0A — OB).

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 113

M s (0A — OB)
iff (M =5 OA) implies (M =5 OB)
iff VteSe(sRtimplies M |=; A) implies V¢t € S o (sRt implies M =; B)
iff Vt e Se(sRtimplies (M |=; A implies M =; B))
iff VteSe(sRtimplies M =; (A— B))
if M=, O(A— B)

Here we used the following tautology from propositional logic:
(A-B)»(A=>C)=(A— (B—=0)).
Thus we arrive at

M =5 (DA — OB) if M =, O(A — B).

9.4 Valuation and tautology

Let M be the ®-model (S, R, V), Bool be the set {true, false}, and let s € S be a given point.

Definition (valuation of an atomic formula)
The function v, : ® — Bool defined as

) true ifseV(p)
vs(p) = { false otherwise

is called a wvaluation of the atomic formula.

Thus a model on a frame gives rise to a collection {vs | s € S} of valuations of ®, and conversely,
such a collection of functions defines the model in which V(p) = {s | vs(p) = true}.

Definition (quasi-atomic formula)
A formula A is quasi-atomic if it is atomic (i.e. A € ®) or if it begins with a O, i.e. A = 0B
for some B € ®.

If ®7 is the set of all quasi-atomic formulae, then any formula A may be constructed from
members of ®9U {—} using only the connective —. Hence, any valuation

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

Introduction to propositional modal logic 114

v:P? — Bool

of the quasi-atomic formulae extends uniquely to a valuation

v : Fma(®) — Bool

of all formulae.

Definition (tautology)
A formula A is a tautology if v(A) = true for every valuation v of its quasi-atomic subformulae.

9.5 Truth and validity

Definition (truth of a formula)
A formula A is true in a model M, denoted by M |= A, if it is true at all points in M, i.e. if

Vs €S (M, A)

Definition (valid)
A formula A is valid in the frame F = (S, R), denoted by F = A, if

M = A for all models M = (S, R, V) based on the frame F.

Definition
If C is a class of models, then a formula A is ¢rue in C, denoted by C |= A, if A is true in all
members of C.

Definition
If C is a class of frames, then a formula A is valid in C, denoted by C | A, if A is valid in all
members of C.

Definition
A schema is said to be true in a model (respectively, valid in a frame) if all instances of the
schema have that property. More generally, we use the notations M = 7 and F |= 7, where
? C Fma(®), to mean that all members of 7 are true in the model M and valid in the frame F
respectively.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 115

Examples
The following formulae are true in all models, hence valid in all frames.
oT
0(A — B) —» (DA — OB)
O(A — B) —» (DA — OB)
O(A— B) —» (CA— ©B)
O(AAB)=(0A— OB)
O(AV B)=(CA— ©OB)

We prove the first two examples:

Let M be a model on a frame F = (S, R) and let s be an arbitrary point in S.

Proof:
M =, 0T
iff sRt implies M = T for all t € S by the definition,
M [E¢ T is true in any model,
S0
iff sRt implies true = true by the property of implication
That is, M =, OT is true in any model.

Proof:
M= (0(A— B) —» (0DA — 0OB))
iff (M =; O(A — B)) implies (M =, (DA — OB)) by the definition
if (M =s;0(A— B)) implies (M =5 O(A — B)) see Ezample (d)
wn Section 9.3
The last expression is true according to one of the properties of implication.

9.6 Generated submodels

Let F = (S, R) be a frame.

Definition (submodel)
If M =(S,R,V) is a model and ¢t € S, then the submodel of M generated by t is

Mt = (8", B, V")

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 116

where

St ={ueS|tR*u}

(R* is the reflexive and transitive closure of the relation R; see Section 6.5)
R'= RN (S' x S
Vip) =V(p)n S

Submodel lemma
If A€ Fma(®), then for any u € S?,

M=, A if MEe, A

Proof by induction:
According to the definitions of St, R* and V*(p), u € S* implies u € S, sR'u implies sRu, and
p € Vi(p) implies p € V(p).

e Base cases:
1. If A =p where p € ®, then
Mt |:u D
iff peVi(p) by the definition

if peV(p) see definition of Vi(p)
if M=, A by the definition

2. If A = — then it is not in any model, thus M! (&, — and M £, —
Therefore, the assertion is true in both base cases.

o Inductive step: Let B and D be formulae such that
Mt =, B iff M=, B
and
Mt =, D iff M=, D
hold.
1. Let A= B — D. Then
M!=, (B— D)
if (M', B)—» (M! =, D) by the definition
if M=, B) - (M, D) by the induction

hypothesis
if M=, (B— D) by the definition

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Introduction to propositional modal logic 117

2. Let A =0B. Then
Mt =, OB
iff uR's— M!E=, B forall s e S
if uRs > M |=s B by the induction
hypothesis
if MpE, OB by the definition

Thus, according to the induction principle the lemma is true.

Corollary

1. M = A implies M! | A.
2. M = Aiff A is true in all generated submodels of M.

3. F |= Aiff A is valid in all generated subframes of F.

9.7 p-Morphisms

Let My = (Sl,Rl, Vl) and My = (SQ,RQ, Vz) be models.

Definition (p-morphism)
A p-morphism from M; to Ms is a function f : S; — S, satisfying

sRyt implies f(s)Ra2f(t);
f(s)Rou implies Ft(sRit A f(t) = u);
seVi(p) iff f(s) € Va(p).

A function satisfying the first two conditions is a p-morphism from the frame (S, R;) to the
frame (SQ, RQ)

p-Morphism lemma 1

If A € Fma(®), then for any s € Sy,

My s Aff My s A.

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Conclusion 118

Definition (p-morphic image)
If there is a p-morphism f : S; — Sy that is onto (surjective), then the frame F; is called a
p-morphic image of the frame F7.

p-Morphism lemma 2

If 75 is a p-morphic image of Fi, then for any formula A,
F1 = A implies F» = A.

Proofs of these lemmas are as exercises left for the reader.

10 Conclusion

In this report we have presented material for a course on mathematics covering those topics which
are the most important for those wishing to study formal methods, such as RAISE, VDM, and
7. This material could be used immediately prior to a course on formal methods as a short
introductory course on mathematics for students without the required mathematical knowledge.
It could also, suitably extended, form the bulk of a longer course on “Mathematics for computer
science” forming part of the curriculum in computer science departments in universities, and
thus could be useful to students of computer science in general.

We have also presented in the final section of the report material for an introductory short course
on modal logic which could similarly be presented before a course on Duration Calculus.

Teaching materials for each of the individual sections included in this report, specifically over-
head projector foils for lecturers, are available from UNU/IIST and can in fact be downloaded
electronically from UNU/IIST’s home pages at the following URL:
http://www.iist.unu.edu/home/Unuiist /newrh/II/1/3/2/page.html.

11 Acknowledgements

Many thanks to my supervisor Richard Moore for reading and revising both the manuscript and
the final version of this report, and providing helpful comments on all sections of the report.
The text and its contents became more readable and contain fewer errors thanks to him. My
thanks to Dang Van Hung for reading and making valuable comments on the section on modal
logic. Thanks also to all at UNU/IIST who helped with this project and who made my stay at
UNU/IIST possible.

Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau

www.manaraa.com

References 119

References

[1] Allen B. Ticker. Computing curricula 1991. Communications of the ACM, p. 6884,
June 1991.

[2] The RAISE Method Group. The RAISE Development Method. BCS Practitioner Se-
ries. Prentice Hall, 1995.

[3] The RAISE Language Group. The RAISE Specification Language. BCS Practitioner
Series. Prentice Hall, 1992.

[4] Z. Manna, R. Waldinger. The Logical Basis for Computer Programming. Volume 1:
Deductive Reasoning. Addison-Wesley Publishing Company,1985.

[5] R. Goldblatt. Logics of Time and Computation. Second Edition. CSLI, 1992.
[6] Juan C. Bicarregui, etc. Proof in VDM: A Practitioner’s Guide. Springer-Verlag. 1994

[7] K. Sugihara. Discrete Mathematics for Computer Science. Department of Information
and Computer Science, College of Natural Science, University of Hawaii.
http://www.ics.hawaii.edu/ sugihara/course/

[8] S. Ramaswamy. Discrete Structures. Department of Computer Science, Tennessee
Technological University.
http://www.csc.tntech.edu/ srini/DM/

[9] Recursion Tutorial. Web site. Information Technology Centre, National University of
Ireland, Galway.
http://www.it.ucg/CAI_Tutor/

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

Index

absolute complement

set, 55
absorption

law, 20
absorptive

law, 58
algorithm

calculating, 11
AND, 5, 34
antecedent, 6
antisymmetric

relation, 81
argument, 68
associative

law, 18, 58
atomic formula, 107

valuation, 113

base case, 87
biconditional, 6
bijection, 75

function, 75

mapping, 63
bijective

mapping, 63
binary

predicate, 32

relation, 78, 80
bound

occurrence, 44

variable, 39, 44
box, 107

cardinality
set, 53
clause
base, 99
extremal, 100
inductive, 99
closed
expression, 44
closure
reflexive and transitive, 86

120

transitive, 85
co-domain, 68
relation, 78
commutative
law, 18, 58
complement
law, 58
relation, 84
set, 55
composition
function, 77
mapping, 64
relation, 84
compound sentence, 4
comprehension
map, 61
set, 50
conditional, 34
statement, 6
conjunction, 5, 34, 108
connective, 5
consequent, 6
constant, 30
truth, 5
contradiction, 14
law, 19
contraposition
law, 19

deduction, 99
diagram

arrow, 69, 78

Venn, 33, 55
diamond, 108
difference

relation, 84
directed graph, 79
disjunction, 5, 34, 108
distributive

intersection, 54

law, 18, 58

union, 54
domain, 61, 68

www.manharaa.com

References

121

mapping, 61
relation, 78
domain restriction
mapping, 66
domain subtraction
mapping, 66

domination
law, 18

double negation
law, 18

edge, 79
element, 48
eliminating
tautology, 20
empty
mapping, 62
set, 51
enumeration
mapping, 61
set, 49
equivalence, 6, 35, 108
equivalent
expression, 14
existential
quantification, 35
quantifier, 35
statement, 36
existential statement
negation, 38
expression
closed, 44
equivalent, 14
predicate logic, 42
propositional, 7
valid, 14, 45

falsum, 107

finite
mapping, 61
set, 49

formula, 108
quasi-atomic, 113
true, 114
valid, 114

frame, 110

free
occurrence, 44
variable, 39, 44

function, 68, 80
absolute value, 70
analytical form, 70
arrow diagram, 69
bijection, 75
composition, 77
explicit definition, 90
exponential, 70
factorial, 90
formal parameter, 90
greatest common divisor, 92
Hamming distance, 71
identity, 70
injection, 71
inverse, 75
machine, 71
one-to-one, 71
one-to-one correspondence, 75
onto, 73
partial, 67
polynomial, 70
recursive, 86
surjection, 73
table, 69
total, 68

generated submodel, 115

idempotent
law, 18, 58
identity
law, 18, 58
if expression, 88
image, 60, 68
inclusion
in intersection, 59
in union, 59
induction, 99
inductive definition, 99, 100
base case, 100
constructor function, 100
infinite
mapping, 61

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

References

122

set, 49
injection

function, 71
injective

mapping, 62
intersection

distributive, 54

relation, 84

set, b4
inverse
function, 75
mapping, 63
relation, 84
irreflexive

relation, 81

law
absorption, 20
absorptive, 58
associative, 18, 58
commutative, 18, 58
complement, 58
contradiction, 19
contraposition, 19
DeMorgan’s, 16, 18, 59
distributive, 18, 58
domination, 18
double negation, 18
idempotent, 18, 58
identity, 18, 58
modus ponens, 15, 20
modus tollens, 20
simplification, 20
transitive, 19, 59
letter
propositional, 5
logic, 3
propositional, 4
loop, 79

map
comprehension, 61
mapping, 60
bijection, 63
bijective, 63
composition, 64

domain, 61
domain restriction, 66
domain subtraction, 66
empty, 62
enumeration, 61
finite, 61
infinite, 61
injective, 62
inverse, 63
override, 65
product, 64
range, 61
range restriction, 67
range subtraction, 67
surjective, 62
union, 66
member, 48
model, 111
modus ponens
law, 15, 20
modus tollens
law, 20
multi-variable, 69

n-ary
predicate, 32
relation, 78

NAND, 17

negation, 6, 34, 108
existential statement, 38
multiple quantifiers, 41
universal statement, 38

NOR, 16

normal form, 24
conjunctive, 25
disjunctive, 26

NOT, 5, 33

occurrence
bound, 44
free, 44
one-to-one
function, 71
one-to-one correspondence, 75
onto
function, 73

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

References

123

OR, 5, 34
order
partial, 83
total, 83
ordered pair, 56
override
mapping, 65

p-morphic image, 118
p-morphism, 117
permutation, 63
power set, 53
precedence

rule, 8
predicate, 32

binary, 32

n-ary, 32

unary, 31
predicate logic

expression, 42

proposition, 42
preimage, 68
principle of mathematical induction

first, 103

second, 104
product
Cartesian, 56
mapping, 64
set, 56
proof

by induction, 101
element-wise, 58
proper
subset, 51
superset, 52
proposition, 4
predicate logic, 42
propositional
expression, 7
letter, 5

quantification
existential, 35
unique existential, 35
universal, 35
quantifier

existential, 35
universal, 35
quasi-atomic formula, 113

range, 61, 68
mapping, 61
range restriction
mapping, 67
range subtraction
mapping, 67
recurrence, 87
recursion, 86
reflexive
relation, 81
relation, 78
antisymmetric, 81
binary, 78
co-domain, 78
complement, 84
composition, 84
difference, 84
domain, 78
equivalence, 82
intersection, 84
inverse, 84
irreflexive, 81
n-ary, 78
on a set, 78
reflexive, 81
symmetric, 81
transitive, 82
union, 84
rule
precedence, 8

schema, 109

scope of
quantifier, 35

set, 32, 48
absolute complement, 55
boolean sum, 55
cardinality, 53
complement, 55
comprehension, 50
difference, 55
disjoint, 54

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

References

124

empty, 51

enumeration, 49

finite, 49

infinite, 49

intersection, 54

power set, 53

product, 56

truth, 33

union, 54

universal, 50
set induction, 105
set of

integers, 49

irrational numbers, 49

natural numbers, 49

rational numbers, 49

real numbers, 49
simplification

AND, 19

implication, 19

law, 20

OR, 19
statement, 4

conditional, 6

existential, 36

universal, 36
subset, 51

proper, 51
substitution, 22

instance, 110

total, 110

uniform, 110
superset, 52

proper, 52
surjection

function, 73
surjective

mapping, 62
symbol

predicate, 30
symmetric

relation, 81

table
truth, 12, 21

tautology, 14
basic, 17
eliminating, 20
term
disjunctive, 24
Towers of Hanoi, 96
transformation to
conjunctive normal form, 25
disjunctive normal form, 26

transitive
law, 19, 59
relation, 82
truth
constant, 5
set, 33
table, 12, 21
value, 6

two variable, 68

unary
predicate, 31
union
distributive, 54
mapping, 66
relation, 84
set, b4

unique existential
quantification, 35

universal
quantification, 35
quantifier, 35
set, 50
statement, 36

universal statement
negation, 38

valid

expression, 14, 45
valuation

atomic formula, 113
value

truth, 6
variable, 30

bound, 39, 44

free, 39, 44
vertex, 79

UNU/IIST, P.O. Box 3058, Macau

www.manharaa.com

References 125

verum, 108

XOR, 16

UNU/IIST, P.O. Box 3058, Macau

o AJLb

www.manharaa.com

