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Introduction 11 IntroductionAccording to [1], mathematical maturity is essential to the successful mastery of several funda-mental topics in computing, and all computing students should take mathematics courses whichcover at least the following subjects:Discrete mathematics: sets, functions, elementary propositional and predicate logic, elemen-tary graph theory, proof theory, combinatorics, probability, and random numbers.Calculus: di�erential and integral calculus, including sequences and series and an introductionto di�erential equations.In addition, mathematics courses should include some of the following subjects:Probability: discrete and continuous, including elementary statistics.Linear algebra: elementary, including matrices, vectors, and linear transformations.Mathematical logic: propositional and functional calculi, completeness, validity, proof, anddecision problems.Based on these guidelines and on an extensive investigation of the curricula of computer sci-ence departments of several universities (where mathematics courses for computing are variouslycalled \Discrete mathematics", \Discrete structures", \Discrete mathematics in computer sci-ence", \Discrete structures in computer science", \Mathematics of computer science", etc.) wepropose a course \Mathematics for computer science" with the following contents:1. NumbersPositional and based number systems; decimal, binary, octal and hexadecimal systems;radix conversion; representation of numbers in computers: natural numbers, two's com-plement, signed integers and 
oating-point numbers; least common multiple and greatestcommon divisor of positive integers, and algorithms for computing them; primes and fac-torisation; congruence and modular arithmetic.2. Classical Logic2.1 Propositional logic: propositions and logical connectives; propositional expressions;rules of precedence; evaluation of expressions; truth tables; properties of expressions;logical equivalences; proof techniques.2.2 Predicate logic: introduction to predicate logic; truth sets of predicates; connectionsof predicates; quanti�ers; expressions of predicate logic; validity of expressions.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction 23. Arguments and proof techniquesArgument forms; validity of an argument and testing arguments for validity; valid argu-ment forms: modus ponens and modus tollens, disjunctive addition, conjunctive simpli�-cation, disjunctive syllogism and hypothetical syllogism; proof techniques: vacuous proof,trivial proof, direct proof, proof of the contrapositive, proof by contradiction, proof bycases.4. Set theoryIntroduction to set theory; relationships between sets; operations on sets; laws of setalgebra.5. MappingsIntroduction to mappings; relationships between mappings; operations on mappings.6. FunctionsIntroduction to functions; de�ning functions; classi�cation of functions; composition offunctions.7. RelationsIntroduction to relations; functions and relations; classi�cation of binary relations; opera-tions on relations.8. RecursionIntroduction to recursion; examples.9. InductionIntroduction to induction; proof by induction; �rst and second principles of induction.10. Counting, Permutations and CombinationsBasics of counting; permutations; combinations; formulae involving combinations; inclu-sion and exclusion principle; the pigeon hole principle.11. Graph theoryIntroduction to graph theory; connected graphs; isomorphisms and subgraphs; matrix rep-resentations of graphs; weighted graphs; Warshall's algorithm for computing the existenceof paths; Dijkstra's algorithm for �nding the shortest path; trees; rooted trees; binarytrees.12. Random numbersIntroduction to random numbers; the expected value; the chi-square test.In this report we present material which could form the contents of those seven of the abovetopics which are the most important mathematical background for students of formal methods.In particular, this material could form the basis for an introductory course on mathematics forthose who wish to study formal methods but who lack the required mathematical knowledgeto attend a formal methods course directly, and as such could be given prior to the formalmethods course, for example the course on RAISE (Rigorous Approach to Industrial SoftwareEngineering) [2, 3] given by UNU/IIST.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 3The report also includes a section which gives an introduction to propositional modal logic. Thistopic does not appear in the list above, but it forms the mathematical basis for much researchwork in formal methods, in particular for the Duration Calculus which is one of UNU/IIST'smain research areas. This section could be used as introductory material by those wishing tostudy Duration Calculus, and could also form the basis for a short introductory course givenprior to a course on Duration Calculus for those students who are not familiar with modal logic.Although we focus on the topics which are most important for formal methods, the materialpresented, suitably extended with material for the sections not treated here, could of course formthe bulk of a more general \Mathematics for computer science" course for university computerscience departments, and as such could be useful to university computer science students ingeneral.Teaching materials for the sections included in this report, speci�cally overhead projector foilsfor lecturers, are available from UNU/IIST and can in fact be downloaded electronically fromUNU/IIST's home pages at the following URL:http://www.iist.unu.edu/home/Unuiist/newrh/II/1/3/2/page.html.2 Classical logicLogic is the science of order and form. Even if we do not know whether there is a zoo in MacauThere is a zoo in Macau or There is not a zoo in Macauis true. The truth of the sentence can be determined from its structure all without knowingwhether its constituents are true or false. Similarly, we determine that the sentence� > 1:0 or � � 1:0is true without knowing the value of �. In fact, both sentences are instances of the abstractsentence P or (not P )and any sentence of this form is true regardless of whether P is a true or a false proposition.Consider the two following statements:If I wake up late or if I miss the bus, I will be late for work.Therefore, if I arrived at work on time, I did not wake up late and I did not miss the bus.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 4
If x is a real number such that x < �2 or 2 < x, then x2 > 4.Therefore, if x2 < 4, then �2 < x and x < 2.Logic helps us to analyse an argument's form to determine if the truth of the conclusion followsfrom the truth of the preceding statements. While the content of the two statements above isdi�erent, their logical form is similar.Let P stand for the statements `I wake up late' and `x is a real number such that x < �2'. LetQ stand for the statements `I miss the bus' and `x is a real number such that x > 2'. Let Rstand for the statements `I am late for work' and `x2 > 4'. Then the common form of both ofthe above arguments is: If P or Q then R.Therefore, if (not R) then (not P ) and (not Q).Logic also provides a notation for speci�cations that is precise, comprehensive, economical andeasy to manipulate. This chapter presents a language of abstract sentences, called propositionallogic, and introduces techniques for determining whether a given abstract sentence is valid orcontradictory and whether two given abstract sentences are equivalent.2.1 Propositional Logic2.1.1 Propositions and Logical ConnectivesThe building blocks for logical constructs (or logical sentences) are the set of all declarativesentences which can be classi�ed as true or false, but not both. We call such a declarativesentence a proposition (or a statement). For example, `I am in Macau' is a statement, but `I amlying' is not a statement because it is not possible to say whether it is true or false. Similarly,`A (male) barber who shaves only men who do not shave themselves, shaves himself' is not astatement. According to the second clause of this sentence, the barber shaves himself. But the�rst clause states that he only shaves men who do not shave themselves, therefore he does notshave himself. This is contradictory.This type of sentence is known as a paradox.Propositions may be elementary, in the sense that their truth is trivially known, or compoundsentences. These compound sentences are built from elementary ones which are joined or mod-Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 5i�ed using a set of well-de�ned connectives or operators.One goal of logic is to de�ne a set of connectives and how they operate, and to determine thetruth value of compound propositions (sentences).We �rst introduce the basic symbols and show how they are combined to form the sentences ofpropositional logic.De�nition (propositions)The sentences of propositional logic are made up of the following symbols, called propositions:� The truth constants true and falseWe sometimes use T instead of true and F instead of false for simplicity.� The propositional lettersP;Q;R; S; P1; Q1; R1; S1; P2; ::: (the capital letters, possibly with a numerical subscript)De�nition (connectives) Let P and Q be statements.1. AND� The proposition `P and Q', denoted by P ^Q, is true if both P and Q are true andfalse otherwise.� It is called the conjunction of P and Q.� Examples(a) `2+2=4' ^ `3�2=1' is true.(b) `It is raining' ^ `It is not raining' is false.2. OR� The proposition `P or Q', denoted by P _Q, is false only if both P and Q are false;otherwise it is true.� It is called the disjunction of P and Q.� Examples(a) `2+2=4' _ `I am sitting' is true.(b) `It is raining' _ `It is not raining' is true.(c) `9� 1 < 7' _ `10� 1 < 8' is false.3. NOT� The proposition `not P', denoted by � P , is true if P is false and false if P is true.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 6� � P is called the negation of P.� P is true if � P is false and conversely.� Examples(a) not `2+2=4' ( or �`2+2=4') is false.(b) � (9� 1 < 7 _ 10� 1 < 8) is true.4. CONDITIONAL� A conditional statement is a statement of the form `if P, then Q'.� It is written as P ! Q, P being called the antecedent and Q the consequent.� P ! Q is false only if P is true and Q is false, otherwise it is true.� Examples(a) The sentence `If today is Friday, then 3+2=6' would be written in the formP ! Q, where P stands for the sentence `Today is Friday' and Q stands for thesentence `3+2=6'. It is true if today is not Friday, but if today is Friday it isfalse because Q is false.(b) `If it is sunny today, then we will go to the beach' is true if it is sunny and wego to the beach, but it is false if it is sunny and we do not go to the beach.5. EQUIVALENCE or BICONDITIONAL� A statement of the form: `P if and only if Q' is called the equivalence or the bicon-ditional of P and Q. It is written P � Q or P $ Q or P i� Q.� P � Q is true only if P and Q have the same truth value.� Examples(a) `1+1=2' � `5�3=2' is true.(b) `The earth is 
at' � `3 < 5' is false.The truth values of the connectives are summarised in the following truth tables:P � PT FF THere, if the truth value of P is as given in the �rst column, the truth value of (� P ) is as shownin the �nal column. P Q P ^Q P _Q P ! Q P � QT T T T T TT F F T F FF T F T T FF F F F T TReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 7Here, if the truth values of P and Q are as given in the �rst two columns, the truth values ofthe sentences (P ^Q), (P _Q), ... are as shown in the appropriate columns.Observe that according to the de�nition of the OR connective, it is \inclusive" in the sense thatP _Q is true when both P and Q are true.Note also that, according to the de�nition of the CONDITIONAL connective, the sentence(P ! Q) is true whenever its antecedent P is false or its consequent Q is true i.e. false ! Pand P ! true are true for any sentence P .In logic, the sentence P ! Q is well-de�ned even if there is no causal relationship between Pand Q. For example, the concrete sentenceIf Macau is the capital of England, then it is summer hereis considered to be a true sentence irrespective of whether or not it is summer because itsantecedent is false.2.1.2 Propositional ExpressionsExpressions of propositional logic are built up from propositions by application of the proposi-tional connectives. We use the script letters E , F , G, andH, possibly with a numerical subscript,to stand for expressions.De�nition (expressions)Expressions are formed according to the following rules:� Every proposition, i.e. a truth constant or a propositional letter, is an expression.� If F and G are expressions, then so are the following connections of them:(� F)(� G)(F ^ G)(F _ G)(F ! G)(F � G)ExampleThe following strings are expressions:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 8((� (P _Q)) � ((� P ) ^ (� Q)))(((P _Q) ^ (Q! R))! ((P ^R)! (� R)))For example, F : ((� (P _Q)) � ((� P ) ^ (� Q)))is an expression because both P and Q are expressions, hence(P _Q); (� P ), and (� Q)are expressions, hence (� (P _Q)) and ((� P ) ^ (� Q))are expressions, hence the givenF : ((� (P _Q)) � ((� P ) ^ (� Q)))is an expression.2.1.3 Rules of PrecedenceAccording to the de�nition of propositional expressions, any propositional expression should beof the form � (Expr) or (Expr1 �Expr2), where `*' is one of the binary logical connectives. Thismakes propositional expressions very large, in the sense that they are written with many pairsof parentheses. To keep the number of parentheses to a minimum, some rules of precedence areintroduced which guarantee a unique meaning for a compound proposition.De�nition (precedence rules)1. The order of evaluation is � ^_ !� (� has the highest priority).2. We may always omit the outermost pair of parentheses.3. If there are di�erent connectives in an expression, then that connective which has thehighest priority evaluates �rst, and if more than one occurrence of the same connective isin an expression, then these connectives evaluate from left to right.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 94. If there are more than one successive occurrence of the same connective in an expression,then we may only omit the outermost pair of parentheses of the subexpression on the leftside of each connective.5. We may omit all pairs of parentheses which can unambiguously be restored using the abovefour rules.Examples F : ((� (P _Q)) � ((� P ) ^ (� Q)))can be written as follows:Expressions Rules usedF : (� (P _Q)) � ((� P ) ^ (� Q)) rule 2F : � (P _Q) � (� P ) ^ (� Q) the outermost parentheses ofsubexpressions on both sidesof � are omittedF : � (P _Q) � � P ^ � Q the parentheses of subexpres-sions on both sides of ^ areomittedThe expression E : ((P ! Q)! (R! S))can be written as: E : (P ! Q)! (R! S) (rule 2)There are three occurrences of ! in the expression. There is no subexpression in parentheseson the left of the second or the third of them, but subexpressions on both sides of the secondare in parentheses. According to rule 4, we may omit the parentheses of the subexpression onthe left: E : P ! Q! (R! S) (rule 4)NOTATIONOf course, there may be parentheses in an expression that cannot be omitted without losing themeaning of the original expression. For example, the parentheses in the following expressionscannot be omitted.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 10E : P ! Q! (R! S)F : � (P _Q) � � P ^ � QLet us insert parentheses in the expressionE : P ! Q! R! SThere are three ! connectives, and a propositional letter (P ) is on the left of the �rst (fromthe left) connective, so it should not be in parentheses. There are subexpressions on both sidesof the second one, but according to rule 4 only parentheses of the left subexpression may beomitted, so the expression is equivalent to the following expression:E : (P ! Q)! R! SNow there is a subexpression on the left of the third conditional sign and its parentheses maybe omitted, so we arrive at the following form:E : ((P ! Q)! R)! SFinally, we write the whole expression in parentheses:E : (((P ! Q)! R)! S)We can check that this is not equivalent to ((P ! Q)! (R! S)) which is the original expres-sion we started with.Let us similarly insert parentheses in the expressionF : � P _Q � � P ^ � QFirst, all negations can be in parentheses because negation has the highest priority:F : (� P ) _Q � (� P ) ^ (� Q)Next, the conjunction may be in parentheses because it has the second highest priority:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 11F : (� P ) _Q � ((� P ) ^ (� Q))Then, the disjunction may be in parentheses because it has higher priority than equivalence:F : ((� P ) _Q) � ((� P ) ^ (� Q))Finally, we arrive at F : (((� P ) _Q) � ((� P ) ^ (� Q)))which is not the same as ((� (P _Q)) � ((� P ) ^ (� Q))).2.1.4 Evaluating ExpressionsFor any expression E , we often need to calculate its truth value by assigning a given truth value,either true or false, to each of the propositional letters in the expression. To do this, let n bethe number of propositional letters contained in the expression. Then we may use the followingalgorithm.Evaluation algorithm1. Create a table with two rows and n+1 columns and write the propositional letters of thegiven expression in the �rst n columns of the �rst row and the expression itself in the lastcolumn.2. Number all the operators (connectives) within the expression according to their evaluationorder as de�ned by the precedence rules. Here we should recall that the subexpression inthe innermost parentheses must be evaluated �rst.3. Fill the columns of the second row with the given truth values of the corresponding propo-sitional letters.4. Evaluate the operator which has the lowest number which has not yet been evaluated, andwrite its result in the second row, exactly under the sign of the operator.5. Repeat the previous step until the last operator has been evaluated.ExamplesEvaluate the expressionReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 12E : (P ! Q) ^ (Q! P )when P is false and Q is true. After the �rst three steps of the algorithm, the table would be:1 3 2P Q (P ! Q) ^ (Q! P )F TIn the next step, we should evaluate the operator which has number 1. Its result is true accordingto the truth table of !: 1 3 2P Q (P ! Q) ^ (Q! P )F T TNow, we should evaluate operator number 2. Its result is false:1 3 2P Q (P ! Q) ^ (Q! P )F T T FFinally, we evaluate the last operator. Its result is false and this is therefore the value of thewhole expression for the given values of its propositional letters P and Q:1 3 2P Q (P ! Q) ^ (Q! P )F T T F F2.1.5 Truth TablesFor a given expression, a table containing its values under all possible combinations of truthvalues of the propositional letters within the expression is called the truth table of the givenexpression.If an expression contains only two propositional letters P and Q, we distinguish two cases, as-signing P the truth values true and false respectively. In each case we also distinguish betweentwo sub-cases, assigning Q the truth values true and false respectively. Thus, for an expressioncontaining only two propositional letters P and Q, there are four possible combinations of truthvalues of the letters. So we must consider the following four pairs:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 13P QT TT FF TF FIn general, if an expression contains n propositional letters there are 2n di�erent combinationsof truth values of the letters.We can use the algorithm described above to calculate the truth table of a given expression.Thus, if an expression contains n propositional letters, then its truth table contains n+1 rowsand n+1 columns.ExamplesThe truth table of the expression E : (P ! Q) ^ (Q! P )is 1 3 2P Q (P ! Q) ^ (Q! P )T T T T TT F F F TF T T F FF F T T TNow, suppose our given expression isF : � (P _Q) � � P ^ � Q.Its truth table is 2 1 6 3 5 4P Q � (P _Q) � � P ^ � QT T F T T F F FT F F T T F F TF T F T T T F FF F T F T T T TReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 142.1.6 Properties of expressions1. De�nition (tautology)An expression E is called a tautology if it is always true regardless of the truth values ofits propositional letters (or component letters).2. De�nition (contradiction)A contradiction is an expression which is false regardless of the truth values of its propo-sitional letters. So, if E is a tautology, then � E is a contradiction and vice versa.3. De�nition (valid expression)We say an expression is valid if it is a tautology.The most straightforward way to determine whether an expression is a tautology or acontradiction is by a complete analysis of all possible values of the expression using itstruth table.ExamplesConsider the following: E : P ^Q! PF : P^ � P ^QThe corresponding truth tables are1 E 2 1 FP Q P ^Q ! P P ^ � P ^ QT T T T F F FT F F T F F FF T F T F T FF F F T F T FThe truth values in the column headed E exhibit the truth values of the expression E ;because E is true in each case we have determined that it is a tautology. In the same way,we have determined that F is a contradiction.4. De�nition (implies)An expression E implies an expression F if (E ! F) is a tautology. It is written E ) F .5. De�nition (equivalent expressions)Expressions E and F are called logically (or tautologically) equivalent if (E � F) is a tau-tology. It is written E = F .� If E = F , then E and F always have the same truth value for each combination oftheir component letters.� We can establish that if E ) F and F ) E then E and F are tautologically equivalent,i.e. E = F .Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 15ExamplesConsider the two expressions E : P ^ (P ! Q)! QF : P ! Q �� P _QTheir corresponding truth tables are:2 1 E 3 F 1 2P Q P ^ (P ! Q) ! Q P ! Q � � P _ QT T T T T T T F TT F F F T F T F FF T F T T T T T TF F F T T T T T TBecause E is true in each case, we have determined that E is a tautology or P ^ (P ! Q)implies Q, i.e. P ^ (P ! Q)) QThis property is called the modus ponens Law.In the same way, we can determine that P ! Q and � P _Q are logically equivalent, i.e.P ! Q = � P _Q.Show � (P _Q) = � P ^ � Qand � (P ^Q) = � P _ � Q.It is su�cient to show that the expressionsE : � (P _Q) � � P ^ � Qand F : � (P ^Q) � � P _ � Q.are tautologies which we do by constructing their truth tables:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 162 1 E 3 5 4P Q � (P _Q) � � P ^ � QT T F T T F F FT F F T T F F TF T F T T T F FF F T F T T T T2 1 F 3 5 4P Q � (P ^Q) � � P _ � QT T F T T F F FT F T F T F T TF T T F T T T FF F T F T T T TThe truth values in the columns headed E and F are all true, which means that the twopairs of expressions are equivalent.These properties of the logical connectives �, ^ and _ are known as DeMorgan's Laws.2.1.7 Additional ConnectivesIn computer science, in addition to the connectives de�ned above, the three following connectivesare often used.1. XORRecall that the _ connective is \inclusive" in the sense that P _Q is true in the case whereboth P and Q are true. But, for example, in the statementToday is 5 or 6 of Junethe or connective should be \exclusive" in the sense that its subsentences cannot both betrue.� The Exclusive OR of P and Q, denoted by PxorQ, is the proposition that is truewhen exactly one of P and Q is true and false otherwise.� The equivalence PxorQ = (P _Q) ^ � (P ^Q)holds for xor.2. NOR� P nor Q is a proposition which is de�ned by the expression� (P _Q), i.e.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 17P nor Q = � (P _Q).� Also P nor Q = � P ^ � Q (DeMorgan's law is used).3. NAND� P nand Q is a proposition which is de�ned by the expression� (P ^Q), i.e. P nand Q = � (P ^Q)� Also P nand Q = � P _ � Q (DeMorgan's law is used).The truth values of these three connectives are given in the following table:P Q P xor Q P nor Q P nand QT T F F FT F T F TF T T F TF F F T T2.1.8 Logical EquivalencesUp to now we have presented particular logical expressions and introduced a method of estab-lishing their validity. Tautologies and logically equivalent expressions are very useful for makingthe analytic transformations necessary to simplify complex expressions and to prove other tau-tologies or establish the equivalence of other expressions. So we now present some of the mostimportant logical equivalences (or logical formulae), where F , G and H are arbitrary logicalexpressions.� Basic TautologiesF _ (� F) = TF ! F = TF � F = T(F ^ G)! F = T
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 18� Identity LawsF ^ T = FF _ F = F� Domination LawsF _ T = TF ^ F = F� Idempotent LawsF _ F = FF ^ F = F� Double negation Law� (� F) = F� Commutative LawsF _ G = G _ FF ^ G = G ^ FF � G = G � F� Associative Laws(F _ G) _H = F _ (G _H)(F ^ G) ^H = F ^ (G ^H)(F � G) � H = F � (G � H)� Distributive LawsF _ (G ^H) = (F _ G) ^ (F _H)F ^ (G _H) = (F ^ G) _ (F ^H)� DeMorgan's Laws� (F ^ G) = � F _ � GReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 19� (F _ G) = � F ^ � G� (F ! G) = F ^ � G� (F � G) = (F � � G)� OR Simpli�cationF _ F = FF _ (F ^ G) = F� AND Simpli�cationF^ T = FF ^ (F _ G) = F� Implication Simpli�cation(F ! G) ^ (F ! H) = (F ! G ^H)(F ! H) ^ (G ! H) = (F _ G ! H)(F ! G) _ (F ! H) = (F ! G _H)(F ! H) _ (G ! H) = (F ^ G ! H)� Transitive Laws(F ! G) ^ (G ! H)! (F ! H)(F � G) ^ (G � H)! (F � H)� Laws of Contradiction� (F^ � F) = TF^ � F = F� Laws of ContrapositionF ! G = � G !� FF � G = � F � � GReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 20� Law of Absorption(F ! G)! (F ! (F ^ G))� Law of Simpli�cationF ^ G ! F� modus ponens LawF ^ (F ! G)! G� modus tollens Law(F ! G) ^ � G !� F� Tautologies for Eliminating ConnectivesF ! G =� F _ GF ! G =� (F^ � G)F _ G = (� F ! G)F ^ G = � (F ! � G)F � G = (F ! G) ^ (G ! F)F � G = (F ^ G) _ (� F ^ � G)Multiple disjunction and conjunctionNote that expressions such as ((P _ Q) _ R) _ S,P _ (Q _ (R _ S)),P _ ((Q _ R) _ S),and so forth are equivalent because of the associative law. For this reason, we will sometimeswrite any of these expressions without parentheses, asP _ Q _ R _ SIn general, we will write a multiple disjunction and a multiple conjunction as the following:F1 _ F2 _ F3 _ : : : _ FnF1 ^ F2 ^ F3 ^ : : : ^ FnReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 212.1.9 Proof Techniques1. Use of truth tablesThe most straightforward way of proving a given tautology or the equivalence of two givenexpressions is the use of truth tables and the analysis of all the possible truth values of theexpressions. For example, to prove the equivalence� (P � Q) = (P � � Q)we consider the two expressions: F : � (P � Q)and G : P � � Qand calculate their truth tables F 1 G 1P Q � (P � Q) P � � QT T F T F TT F T F T FF T T F T TF F F T F FThen, we analyse the values of these two expressions. We determine that the given equivalenceis true because the truth values in the columns headed F and G are the same in each case.However, the use of truth tables is tedious and unmanageable if the expressions involved arelong and complicated, in particular if they contain many di�erent propositional letters, becausethe size of the table increases exponentially with this number (for example, the truth table has25 = 32 rows for an expression containing 5 propositional letters).So, we need some analytic methods of proving logical properties of propositions.2. Substitution methodAnalytic transformations are often used for proving tautologies and equivalences. Such analyticReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 22transformations must not add anything to the meaning of an expression.Let us introduce some notion for the operation of replacing subexpressions of a given expressionwith other subexpressions.De�nition (substitution)Let G and H be expressions.If F [G] is an expression, which may or may not contain an occurrence of the expression G asa subexpression, then F [H] denotes any of the expressions obtained by replacing zero, one, ormore occurrences of G in F [G] with the expression H.For example, if F [P ] : (P _ Q),then F [Q] denotes either of the expressions(P _ Q) or (Q _ Q).Note that the substitution does not necessarily denote a unique expression.For example, if the expression F [P ] : P _P is given, then F [Q] may denote any of the followingexpressions:P _ P (replacing zero occurrences of P )Q _ P (replacing the �rst occurrence of P )P _Q (replacing the second occurrence of P )Q _Q (replacing both occurrences of P )Thus the substitution above represents any of four expressions. So, if we wish to specify whichoccurrences are to be replaced, we must do so in words.Theorem 1: For any expressions G, H and F [G], if G and H are equivalent, then F [G] andF [H] are equivalent, i.e. G = H ) F [G] = F [H]Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 23This proposition is intuitively clear because G and H have the same truth value under any com-bination of truth values of their components. Therefore in determining the truth values of F [G]and F [H] under these combinations, we obtain the same result in each case.Thus if two expressions are equivalent, we may replace any occurrence of one of them with theother, obtaining an equivalent expression.Corollary: For any expressions G, H and F [G], if G and H are equivalent and F [G] is a tautol-ogy, then F [H] is also a tautology.Chains of EquivalencesAccording to the Transitive Laws (see Section 2.1.8) the equivalence connective is transitive, i.e.the expression (F � G) ^ (G � H)! (F � H)is a tautology. In addition, the equivalence relationship between expressions is transitive, thatis, If F = G and G = H, then F = H.This provides another way of proving the validity of certain expressions.Suppose we would like to prove the validity of an expression F . We attempt to �nd a sequenceof expressions F1, F2, : : :Fn such that F = F1F1 = F2...Fn�1 = Fnwhere Fn is known to be a tautology.Then we can conclude that F is a tautology.We write this chain of equivalences in the form:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 24F = F1 = F2 = � � � = Fn�1 = FnExamples� Prove that the expression � (� F)! F ^ (F _ G)is a tautology. We may write the following chain:Expressions Rules used� (� F)! F ^ (F _ G)= F ! F ^ (F _ G) Double negation= F ! F AND - simpli�cation= T Basic tautologies� Prove that the expressions (� F ! G) and (� G ! F)are equivalent.We may write the following chain:Expressions Rules used� F ! G= � (� F) _ G Elimination of != F _ G Double negation= G _ F Commutative Law= � (� G) _ F Double negation= (� G ! F) Elimination of ! (reverse)3. Normal FormsOften it is bene�cial to reduce a formula to its simplest form, where only the connectives ^ and _and negation are applied to elementary propositions. There are two such forms in propositionallogic.De�nition (disjunctive terms)� Any propositional letters and their negations are disjunctive terms.� If F and G are disjunctive terms, then so is the expression (F _ G).Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 25ExamplesP , Q, � P , (� P _Q), ((� P _Q) _R), and (� P _Q _R) _ (R _ � P )are disjunctive terms.De�nition (conjunctive normal form)The conjunctive normal form (CNF) is a conjunction of disjunctive terms.So, in a conjunctive normal form, the major connectives are conjunctions.ExamplesThe expressionsP ^Q, � P ^ (� P _Q), and (� P _Q _R) ^ (R _ � P ) ^ (P _Q)are in CNF.Transformation to CNFAny given logical expression can be transformed to CNF using the following algorithm:1. Write the given expression.2. Replace all subexpressions of the form F � G with (F ! G) ^ (G ! F).3. Replace all subexpressions of the form F ! G with (� F _ G).4. Replace(a) all subexpressions of the form � (F ^ G) with � F _ � G,(b) all subexpressions of the form � (F _ G) with � F ^ � G,(c) all subexpressions of the form � (� F) with F .5. Repeat step 4 until there are no negations of subexpressions, only of propositional letters.6. Replace(a) all subexpressions of the form H _ (F ^ G) with (H _F) ^ (H _ G),Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 26(b) all subexpressions of the form (F ^ G) _H with (F _H) ^ (G _H).7. Repeat step 6 until the expression is in CNF.8. The result is the conjunctive normal form of the given expression.Examples� Given the expression (P ! Q) ^ (P ! R),its transformation to CNF is:(P ! Q) ^ (P ! R) = (� P _Q) ^ (� P _R)� the expression � (P ! Q) _ (P ! R)is transformed to CNF via:� (P ! R) _ (Q! R) = � (� P _R) _ (� Q _R)= (� (� P )^ � R) _ (� Q _R)= (P ^ � R) _ (� Q _R)= (P _ (� Q _R)) ^ (� R _ (� Q _R))= (P _ � Q _R) ^ (� R _ � Q _R)De�nition (disjunctive normal form)Conjunctive terms can be de�ned similarly to disjunctive ones. Then the disjunctive normalform (DNF) is a disjunction of conjunctive terms.So, in a disjunctive normal form, the major connectives are disjunctions.ExamplesThe expressionsP _Q, � P _ (� P ^Q), and (� P ^Q ^R) _ (R ^ � P ) _ (P ^Q)are in DNF.Transformation to DNFAny given logical expression can be transformed to DNF using the following algorithm:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 271. Write the given expression.2. Replace all subexpressions of the form F � G with (F ! G) ^ (G ! F).3. Replace all subexpressions of the form F ! G with (� F _ G).4. Replace(a) all subexpressions of the form � (F ^ G) with � F _ � G,(b) all subexpressions of the form � (F _ G) with � F ^ � G,(c) all subexpressions of the form � (� F) with F .5. Repeat step 4 until there are no negations of subexpressions, only of propositional letters.6. Replace(a) all subexpressions of the form H ^ (F _ G) with (H ^F) _ (H ^ G),(b) all subexpressions of the form (F _ G) ^H with (F ^H) _ (G ^H).7. Repeat step 6 until the expression is in DNF.8. The result is the disjunctive normal form of the given expression.Examples� Given expression (P ! Q) ^ (P ! R),its transformation to DNF is:(P ! Q) ^ (P ! R)= (� P _Q) ^ (� P _R)= ((� P _Q) ^ � P ) _ ((� P _Q) ^R)= (� P ^ � P ) _ (Q ^ � P ) _ (� P ^R) _ (Q ^R)= � P _ (Q ^ � P ) _ (� P ^R) _ (Q ^R)Also we can get a simple form of the given expression directly using the distributive law:(P ! Q) ^ (P ! R) = (� P _Q) ^ (� P _R)= � P _ (Q ^R)� Consider the expression � (P ! Q) _ (P ! R).Its transformation to DNF is:� (P ! R) _ (Q! R) = � (� P _R) _ (� Q _R)= (� (� P )^ � R) _ (� Q _R)= (P ^ � R) _ (� Q _R)= (P ^ � R)_ � Q _RReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 28These normal forms provide a mechanism for checking whether a given formula is a tautologyor whether two expressions are equivalent.When an expression is in disjunctive normal form then if two of its terms taken together form atautology (e.g. P _ � P ) then the entire disjunction must be a tautology. Also when an expres-sion is in conjunctive normal form then if two of its terms taken together form a contradiction(e.g. P ^ � P ) then the entire conjunction must be a contradiction.Thus, we may use one of the following strategies:1. One way to establish the validity of an expression is �rst transform it to its disjunctivenormal form and then reduce it to a known tautology.2. Another way is to negate the expression, transform it to its conjunctive normal form andthen reduce it to a known contradiction - if its negation is a contradiction, then the originalexpression must be a tautology.3. To establish equivalence of two expressions, �rst transform them both to CNF or DNF, andthen compare the results. If the results are the same the two expressions are equivalent.Examples� Check the equivalence of expressions F : � ((P !� Q) ^ (R! P )) andG : (Q!� P )!� (R! P )F : � ((P !� Q) ^ (R! P )) = � ((� P _ � Q) ^ (� R _ P ))= � (� P _ � Q)_ � (� R _ P )= (P ^Q) _ (R ^ � P )G : (Q! � P )!� (R! P ) = � (Q!� P ) _ � (R! P )= � (� Q_ � P ) _ � (� R _ P )= (Q ^ P ) _ (R ^ � P )= (P ^Q) _ (R ^ � P )Therefore, F and G are equivalent.� Prove the validity of the expression(P ! Q)! (P ! (P ^Q))We transform the given expression to DNF:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 29(P ! Q)! (P ! (P ^Q))= � (P ! Q) _ (P ! (P ^Q))= � (� P _Q) _ (� P _ (P ^Q))= (P ^ � Q) _ (� P _ (P ^Q))= (P ^ � Q)_ � P _ (P ^Q) DNF= (P ^ � Q) _ (P ^Q) _ � P Commutative law= P ^ (� Q _Q) _ � P Distributive law= P ^ T _ � P Basic tautology= P _ � P AND simpli�cation= T Basic tautology2.2 Predicate Logic2.2.1 IntroductionFrom our study of propositional logic we can determine that a sentence such asAll people are mortal or All people are not mortalis true, because it is an instance of the valid propositional logic expressionP _ (� P )with P as the proposition `All people are mortal'.There are some sentences, however, that we cannot tell to be true or false simply by their formbecause they are not instances of any valid expressions in propositional logic. Consider forexample the following sentences:There is an even prime number and all prime numbers are not evenand All men are mortal and Socrates is a man,therefore Socrates is mortalWe can see immediately that both sentences are true, but the language and methods of propo-sitional logic are not enough to express them fully or to prove their validity. For example, in theReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Classical logic 30�rst sentence we might take P to be the proposition `There is an even prime number' and Q tobe the proposition `All prime numbers are even', and we could then write the entire sentence inthe form: P _ � Qbut we cannot deduce that this is true because it is of course not a tautology.The reason we cannot establish the validity of this kind of sentence is that the language ofpropositional logic is too primitive to express properties of an object (such as being a primenumber or a man) or relationships between objects.Sentences involving variables, such as `x = y + 3' or `x > 3' are often found in mathe-matical assertions and in computer programs. We cannot determine whether such sentences aretrue or false if the values of their variables are unknown, which means that we cannot in generaldetermine whether combinations of them, such as (x � �2) _ (2 � x), are true or false usingthe methods of propositional logic.The language and methods of predicate logic extend propositional logic by enabling us to speakabout objects, their properties, and the relationships between them, and thus provide a way ofreasoning about this type of sentence.De�nition (symbols)The sentences of predicate logic are made up of the following symbols:� The truth constantstrue and false� The propositional lettersP;Q;R; S; P1; Q1; R1; S1; P2; ::: (the capital letters, possibly with a numerical subscript)� The constantsa; b; c; a1; b1; c1; a2; b2; c2; :::� The variablesx; y; z; u; x1; y1; z1; u1; x2; y2; :::� The predicate symbolsp; q; r; p1; q1; r1; p2; q2; :::Intuitively, the constants and variables denote objects, and predicate symbols denote relationsbetween these objects. Note that the propositional letters of propositional logic are part of theReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 31language of predicate logic.De�nition (unary predicates)Let D be a set and x be a variable which takes some value from the set D. Then, a unarypredicate de�ned on the set D is any assertive sentence involving the variable x, and is denotedby p(x), q(x), r(x), etc. The set D is called the domain of the variable x.Examples1. Let D be the set of all people. Thenp(y) : `y is mortal'and q(y) : `y is wise'are predicates on D .2. Let R be the set of all real numbers. Thenp1(x) : `x � 3'and q1(x) : `(x � �2) _ (2 � x)'are predicates on R.3. Let N be the set of all natural numbers. Thenp2(n) : `n is an even number'and q2(n) : `22n + 1 is a prime number'are predicates on N.Predicates themselves are not propositions because they are neither true nor false. They in-stead de�ne properties of their subjects, which are represented abstractly by the variables theycontain. For example, in the predicate p(y) : `y is mortal', the variable y is the subject and`is mortal' is its property. The value of a predicate depends on the values of its variables, andwhen speci�c values are substituted for these variables the predicate evaluates to either true orfalse, i.e. it becomes a proposition.ExamplesFor the predicates de�ned above we have:� p1(�) : `� � 3' = F andq1(�) : `(� � �2) _ (2 � �)' = Tbut p1(1) : `1 � 3' = T.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 32� p2(12) : `12 is an even number' = T andq2(2) : `222 +1 is a prime number' =T, because 222 +1 = 24+1 = 16+1 = 17 is a primenumber.De�nition (binary predicate)Let D and L be sets and x and y be variables which take their values from the sets D andL respectively. Then a binary predicate de�ned on the sets D and L is any assertive sentenceinvolving the variables x and y, and is denoted by p(x; y), q(x; y), r(x; y), etc. The sets D andL are called the domains of the variables x and y respectively.Examples1. Let x and y be variables which take values from R (the set of all real numbers). Thenp(x; y) : `x � y'and q(x; y) : `x2 + y2 � 4'are binary predicates de�ned on R.2. Let D be the set of all people and x and y be variables taking values from D. Thenp1(x; y) : `x and y are roommates'and q1(x; y) : `x is taller than y'are binary predicates de�ned on D.De�nition (predicate)A predicate is an assertive sentence containing a speci�c number of variables. It becomes aproposition when speci�c values taken from the domains of the variables are substituted inplace of the variables.A predicate containing n (n � 1) variables is also called an n-ary predicate. 1-ary (unary) and2-ary (binary) predicates have been de�ned speci�cally above.2.2.2 Truth setsA set can be de�ned by simply enclosing the set elements in braces. For instance, the setS = f2; 3; 5; 7g is the set of prime numbers less than 10. When using symbols, sets are typicallyrepresented by upper case letters and set elements by lower case. A particular number x mayor may not belong to, or be a member or an element of, the set S. We use the predicate `x 2 S'Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 33to mean that x is an element of the set S, and the predicate `x =2 S' to indicate the converse,i.e. that x is not an element of (or x is not in) S.De�nition (Venn diagrams)Venn diagrams are a way of representing sets pictorially. Circles represent sets, a rectanglearound the circles represents the Universal set, and shading is used to illustrate the elements ofthe sets.The diagrams are not a complete representation of sets or their relationship, e.g. the size of setsand their individual elements cannot be represented.We have mentioned that when values (or elements) are substituted for variables in a predicateit becomes a proposition, i.e. its value is either true or false. All the elements that make thepredicate a true proposition form one set and the elements which make the predicate a falseproposition form another set.De�nition (truth set)Let p(x) be a predicate on a set D. Then the truth set of the predicate p(x) is the set of allelements x of the domain D which make p(x) true.We denote the truth set of p(x) by P. This is written symbolically as:P = fx 2 D j p(x)gwhich is read as \P is the set of all x in D such that p(x)". (the vertical bar `j' is read as \suchthat").2.2.3 Connections of PredicatesWe have de�ned logical operators �; ^; _; !; and � for propositions. Now we de�ne theseoperators for predicates.De�nitionsLet p(x) and q(x) be predicates de�ned on the same domain D.1. NOTReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 34The negation of p(x) is the predicate de�ned on D which is true only for those elementsx of D for which p(x) is false. It is denoted by � p(x) and its truth set is denoted by P.The domain D is thus divided into two parts by the predicate p(x): P and P. These setsare shown in the Venn diagrams in Figure 1.
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Figure 1: The truth sets of predicates p(x) and � p(x)2. ANDThe conjunction p(x) ^ q(x) is the predicate de�ned on D which is true only for thoseelements x of D for which both p(x) and q(x) are true.3. ORThe disjunction p(x) _ q(x) is the predicate de�ned on D which is true for those elementsx of D for which either p(x) or q(x) or both are true. The truth sets of the disjunctionand conjunction of two predicates are shown in Figure 2.
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Figure 2: The truth sets of predicates p(x) _ q(x) and p(x) ^ q(x)4. CONDITIONALThe conditional p(x) ! q(x) is the predicate de�ned on D which is false only for thoseelements x of D for which p(x) is true and q(x) is false. It is equivalent to the predicate� p(x) _ q(x).Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 355. EQUIVALENCEThe equivalence p(x) � q(x) is the predicate de�ned on D which is true for all thoseelements x of D for which p(x) and q(x) have the same truth value.The truth sets of the disjunction and conjunction of two predicates are shown in Figure 3.
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Figure 3: The truth sets of predicates p(x)! q(x) and p(x) � q(x)Although we have de�ned these connectives speci�cally for unary predicates, the de�nitionsapply with obvious extension to arbitrary predicates.2.2.4 Quanti�ersWe are often interested in statements which indicate the number of elements for which a par-ticular predicate (a property) is true. In particular, if p(x) is a predicate on D, we often dealwith the following statements:� p(x) is true for all values of x,� p(x) is true for at least one value of x,� p(x) is true for exactly one value of x.In logic, we write these statements as 8xp(x), 9xp(x) and 9!xp(x) respectively.The symbol 8 is translated as \for all", \for each", or \for every", and is known as the universalquanti�er sign. The symbol 9 is the existential quanti�er sign, and means variously \for some",\there exists", or \for at least one". The symbol 9! is translated as \there exists exactly one".The string 8x is called universal quanti�cation, and 9x and 9!x are called existential quanti�-cation and unique existential quanti�cation respectively. The predicate p(x) appearing in suchstatements is said to be the scope of the corresponding quanti�er.
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Classical logic 36Predicates, as mentioned above, are not propositions. However the quanti�ers change predicatesinto propositions. This process is called quanti�cation.De�nition (universal statements)A universal statement containing a predicate is a proposition that is true if, and only if, thepredicate is true for every value of its variable within the given domain.De�nition (existential statements)An existential statement of the form 9xp(x) containing a predicate is a proposition that is trueif there is at least one value within the variable's domain for which the predicate is true. Anexistential statement of the form 9!xp(x) containing a predicate is a proposition that is true ifthere is exactly one value within the variable's domain for which the predicate is true.Examples� Let B be the set of all species of non-extinct birds, and x be a variable such that x 2 B.Let q(x) be the predicate `x can 
y'.The universal statement of this predicate can then be represented as8x q(x) which corresponds to the statement that all species of non-extinct birdscan 
y.It is obvious that 8x q(x) is false since there exist species of birds for which the predicateis false (ostriches and penguins, for example, are 
ightless). Thus 9x � q(x) is true.� Let n 2 N and p(n) : `22n +1 is a prime number'. Check whether the statement 8n p(n)is true.We can easily determine that p(1), p(2) and p(3) are true because the numbers 5 (221+1 =22+1 = 5), 17 (222 +1 = 24+1 = 16+1 = 17), and 257 (223 +1 = 28+1 = 256+1 = 257)are prime. But from this we cannot say that 8n p(n) is true because we have not checkedall natural numbers. Checking all numbers in this way is impossible because the setN is in�nite. However, the 17th century mathematician Euler found that p(5) is false(225 +1 = 232+1 = 4294967296+1 = 4294967297 is not prime). This one case is su�cientto prove that 8n p(n) is false, i.e. there exists a number m for which p(m) is not true sop(n) cannot be true for all n. However, we have determined that the predicate 9np(n) istrue by our evaluation of p(1), for example.� Let x 2 Z (the set of all integers) and letp(x) : `2x2 � 8x+ 7 � 0'. Check whether the statement 9xp(x) is true.We can rewrite the given predicate in the following equivalent forms:p(x) : `2x2 � 8x+ 8� 1 � 0' orReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 37p(x) : `2(x2 � 4x+ 4)� 1 � 0' orp(x) : `2(x � 2)2 � 1 � 0'.From the last, we can easily see that p(2) is true (because �1 � 0), which means thatthere exists an integer for which p(x) is true. Therefore, 9xp(x) is true.� Let n 2 N, and letp(n) : `n is a prime number' and q(n) : `n is an even number'.Then p(n) ^ q(n) means that `n is an even prime number'.Therefore, 9!n(p(n) ^ q(n)) and also 9n(p(n) ^ q(n)) are true because 2 is the only evenprime number, but 8n(p(n) ^ q(n)) is false because 5 and 7 are odd prime numbers.2.2.5 Quanti�cation over empty domainsLet p(x) be a predicate de�ned on a domain D which is empty, i.e. D = ;.Consider the statement 9xp(x).9xp(x) is equivalent to the statement `there is some element x such that x 2 D^ p(x)' which isfalse because x 2 D is false when D = ;. That is, we arrive at9xp(x) = false when the domain of the predicate is empty.Now consider the statement 8xp(x).8xp(x) is equivalent to the statement `for every element x, if x in D then p(x) is true' which canbe written symbolically as `x 2 D ! p(x)'. The last statement is equivalent to `false ! p(x)'which is automatically true irrespective of the value of p(x). That is, we arrive at8xp(x) = true when the domain of the predicate is empty.2.2.6 Negation of quanti�ed statementsAs stated above, any quanti�ed unary statement is a proposition, so it can be negated.Let p(x) be a predicate de�ned on D.
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Classical logic 38Negating universal statementsThe negation of the universal statement 8xp(x) can be formed in two ways:� The entire statement is negated, i.e. � (8xp(x)), which means `p(x) is not true for all x'.� The statement `p(x) is not true for all x' is logically equivalent to the statement `for atleast one x, p(x) is not true'. This is equivalent to 9x(� p(x)).These two di�erent form of negation must be equivalent to each other, so we obtain the formula:� (8xp(x)) = 9x(� p(x)).Negating existential statementsSimilarly, the negation of the existential statement 9xp(x) can be formed in two ways:� The entire statement is negated, i.e. � (9xp(x)), which means `there does not exist x forwhich p(x) is true'.� The statement `there does not exist x for which p(x) is true' is logically equivalent to thestatement `for all x, p(x) is not true'. This is equivalent to 8x(� p(x)).Again, the two forms must be equivalent, so we obtain the formula:� (9xp(x)) = 8x(� p(x)).The formulae � (8xp(x)) = 9x(� p(x)).and � (9xp(x)) = 8x(� p(x)).are DeMorgan's laws for quanti�ed statements.
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Classical logic 392.2.7 Multiple quanti�ersFree and bound variablesPredicates contain variables which can be substituted by any values of their domain. Quanti�edstatements, for example 8xp(x) or 9xp(x), also contain variables, but these variables are notreal variables in the sense that they cannot be substituted by values.If a variable v is in the scope of a quanti�er, 8v or 9v, then it is said to be a bound variableor bound by the quanti�er. On the other hand, a variable which is not in the scope of anyquanti�er is said to be free.ExampleIn the statement 8x(p(x; y) ^ q(x))the variable x is bound and y is a free variable.This example illustrates that when one of the variables in an n-ary (n � 2) predicate is quanti-�ed, we obtain a new n � 1 -ary predicate. Therefore, we can quantify any of the variables inthis n� 1 -ary predicate, i.e. we can have more that one quanti�er in a statement.Examples� Let p(x; y) be a predicate, where x 2 D1 and y 2 D2. Then we can construct unarypredicates by quantifying one of the variables of p(x; y) for example:Predicates Domainq(x) : 8y p(x; y) D1r(x) : 9y p(x; y) D1s(y) : 8x p(x; y) D2t(y) : 9x p(x; y) D2Therefore, we can write the following statements:
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Classical logic 408xq(x) = 8x8y p(x; y) 9xq(x) = 9x8y p(x; y)8xr(x) = 8x9y p(x; y) 9xr(x) = 9x9y p(x; y)8ys(y) = 8y8x p(x; y) 9ys(y) = 98x p(x; y)8yt(y) = 8y9x p(x; y) 9yt(y) = 9y9x p(x; y)� Let D = fa; b; c; d; eg, x; y 2 D and p(x; y) be a predicate de�ned by the tablexny a b c d ea T T F F Fb F F F F Fc F T T F Td F T T T Fe F T F T TThen all the predicates q(x) : 8y p(x; y),r(x) : 9y p(x; y),s(y) : 8x p(x; y),t(y) : 9x p(x; y)are de�ned on D and have the following values:x a b c d e y a b c d eq(x) F F F F F s(y) F F F F Fr(x) T F T T T t(y) T T T T TTherefore, we establish the following propositions:8xq(x) = 8x8y p(x; y) = F 9xq(x) = 9x8y p(x; y) = F8xr(x) = 8x9y p(x; y) = F 9xr(x) = 9x9y p(x; y) = T8ys(y) = 8y8x p(x; y) = F 9ys(y) = 9y8x p(x; y) = F8yt(y) = 8y9x p(x; y) = T 9yt(y) = 9y9x p(x; y) = TObserving these propositions shows that8x8y p(x; y) = 8y8x p(x; y),9x9y p(x; y) = 9y9x p(x; y),Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 41but 9x8y p(x; y) 6= 8y9x p(x; y)In general, it turns out that the order of the quanti�ers of di�erent variables does not in
uencethe value of a statement with multiple quanti�ers if all the quanti�ers are the same. But thevalue of a statement containing di�erent quanti�ers depends on the order of the quanti�ers.Negating statements with multiple quanti�ersRecall that, according to DeMorgan's laws, the negation of a `for all' statement is a `there exists'statement, and vice versa, i.e. � (8x p(x)) = 9x(� p(x)).and � (9x p(x)) = 8x(� p(x)).Using these formulae we derive the negation of statements with multiple quanti�ers. Consider,for example, the statement � 8x9y p(x; y)We �rst break it down into its logical component parts:� 8x (9y p(x; y))Now we negate the outer quanti�er using DeMorgan's laws:9x � (9y p(x; y))Applying the same operation to the inner quanti�ed statement then yields:9x(8y � p(x; y))Thus we arrive at the equivalence� 8x9y p(x; y) = 9x8y � p(x; y).Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 422.2.8 Expressions of predicate logicWe have de�ned predicates and quanti�ers in previous sections. Now we de�ne propositions andexpressions of predicate logic.De�nition (propositions)The propositions of predicate logic are intended to represent relationships between objects.� The truth constantstrue and false are propositions.� The propositional lettersP;Q;R; S; P1; Q1; R1; S1; P2; ::: are propositions.� If c1; c2; : : : ; cn are constants, where n � 1, and p is an n -ary predicate, thenp(c1; c2; : : : ; cn)is a proposition.De�nition (expressions)The expressions of predicate logic are built from its propositions according to the following rules:� Every proposition is an expression.� If v1; v2; : : : ; vn are variables or constants, where n � 1, and p is an n -ary predicate, thenp(v1; v2; : : : ; vn)is an expression.� If F is an expression, then so is its negation� F� If F and G are expressions, then so are the following connections of them:F ^ GF _ GF ! GF � G� If v is any variable and F is an expression, then8vF9vF9!vFare expressions.
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Classical logic 43ExampleSuppose p is a ternary predicate and q is a binary predicate. Then:p(x; a; b) and q(x; y) are expressions;9yq(x; y) is an expression;p(x; a; b) ^ 9yq(x; y) is an expression; thus8x(p(x; a; b) ^ 9yq(x; y))is an expression.Before we can consider the meaning of expressions, we must introduce the notions of bound andfree variables in an expression. We begin with an example.In the expression 8x(p(x; y) ^ 9yq(x; y))there are two occurrences of x in the scope of the universal quanti�er 8x both of which arebound as de�ned in the previous subsection. On the other hand, although there are also twooccurrences of y, the occurrence in p(x; y) is not within any quanti�er of the form 8y or 9y soit is a free occurrence of y. The occurrence of y in q(x; y) is a bound occurrence because it iswithin the scope of the quanti�er 9y.Note that a variable can be within the scope of more that one quanti�er. For example, in theexpression 8x(p(x; y) ^ (9x8yq(x; y)))the �nal occurrence of x in q(x; y) is in the scope of both the inner quanti�er 9x and the outerquanti�er 8x. In this case, we regard x as being bound by the inner quanti�er 9x.We note that renaming any bound variable does not change the value of the statement, so that,for example the expression 8x(p(x; y) ^ (9x8yq(x; y)))Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 44is equivalent to the expression in which the outermost occurrence of x is renamed z8z(p(z; y) ^ (9x8yq(x; y))):De�nition (bound and free occurrences)Let v be a variable and F be an expression of predicate logic. The occurrence of v is boundin F if it is within the scope of a quanti�er in F ; it is bound by the innermost quanti�er thatcontains the occurrence of v within its scope. The occurrence of v is free in F if it is not withinthe scope of any quanti�er in F .ExampleIn the expression F : 8x(p(x; y) ^ 9yq(x; y; z))both occurrences of x are bound by the quanti�er 8x. The �rst occurrence of y is free, whilethe second occurrence of y is bound by the quanti�er 9y. The occurrence of z is free in F .De�nition (bound and free variables)The variable v is bound in the expression F if there is at least one bound occurrence of v in F ,and free in F if there is at least one free occurrence of v in F .De�nition (closed expression)An expression is closed if it has no free occurrence of any variable.ExampleThe expression 8x(p(x; y) ^ 9yq(y; z))is not closed because the occurrence of z is free. On the other hand, the expression8x9yp(x; y)is closed.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 452.2.9 Validity of expressionsIn predicate logic, we de�ne validity only for closed expressions, i.e. expressions with no freevariables. Any closed expression, as has been shown in the case of binary predicates, becomesa proposition. Therefore, the de�nition of validity is the same as it is for propositional logicexpressions.De�nition (valid)A closed expression F is valid if it is true under every value of its components.Establishing validityHere, we do not introduce formal methods for proving the validity of closed expressions of predi-cate logic. However, we can use informal methods and common sense to convince ourselves thatexpressions are valid.Examples� Suppose we want to show the validity of the following expression� (8xp(x)) � 9x(� p(x)).According to the de�nition of �, it su�ces to show that� 8xp(x) and 9x(� p(x))have the same truth value, i.e. the �rst expression is true precisely when the second istrue. Suppose, we have that � 8xp(x) = Tthen we have by the de�nition of negation8xp(x) = FThe last statement is true (by the de�nition of the universal quanti�er) precisely whenthere exists a domain element d such thatp(d) = FHence, � p(d) = TReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Classical logic 46Hence, 9x � p(x) = TThis result does not contain the element d taken in the assumption made above. Therefore,� 8xp(x) ) 9x � p(x)Similarly, we can arrive at 9x � p(x) ) � 8xp(x)From the last two statements we conclude that the expression� 8xp(x) � 9x � p(x)is valid.� Suppose we want to show the validity of the expressionF : (9x(p(x) ^ q(x))! (9xp(x)) ^ (9xq(x))It su�ces (by the de�nition of the connective !) to show that whenever the antecedent9x(p(x) ^ q(x))is true, the consequent 9xp(x) ^ 9xq(x)is also true.Assume that 9x(p(x) ^ q(x)) = TThen there exists a domain element, say d, such that p(d) ^ q(d) is true, i.e.p(d) ^ q(d) = THence (by the de�nition of ^) p(d) = T and q(d) = THence, 9xp(x) = T and 9xq(x) = TReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 47From these two statements we get (by the de�nition of ^)9x p(x) ^ 9xq(x) = Tas desired.� Show the validity of the expressionF : (8x8y p(x; y))! (8y8x p(x; y))It su�ces (by the de�nition of the connective !) to show that, if the antecedent8x8y p(x; y)is true, then the consequent 8y8x p(x; y)must also be true.Assume that 8x8y p(x; y) = TThen, for any domain element d the following holds:8y p(d; y) = TSimilarly, for any domain element c the following holdsp(d; c) = T for any d and any cTherefore it follows that 8x p(x; c) = T for any cHence, 8y(8x p(x; y)) = Tas desired.3 Set theory basicsA fundamental concept in all branches of mathematics is that of the set, where a set can bethought of as a simple collection of objects. We have brie
y used set theory notation in thesection on Predicate logic (Section 2.2.2).In this section, we present the basics of set theory.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 483.1 IntroductionDe�nition (sets and elements)A set is a collection of objects which can be distinguished from one another. The objects arecalled the elements or members of the set.A set can contain any objects and in particular all the elements of a set need not be the samekind of object.De�nition (symbols)The following symbols are traditionally used in set theory:� The elementsa, b, c, a1, b1, c1, a2, b2, c2, : : :� The setsA, B, C, A1, B1, C1, A2, : : :De�nition (membership)The elements of a set belong to the set or are members of the set. All other objects are notelements of the set and do not belong to the set.We write the statements� `the element a belongs to the set S',� `the element b does not belong to the set S'symbolically as a 2 Sand b =2 Srespectively. The expression a 2 S is also read as `a is an element of the set S', or `a iscontained in the set S', or simply `a is in (the set) S'.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Set theory basics 49Similarly, the expression a =2 S is read as `a is not an element of the set S', or `a is notcontained in the set S', or simply `a is not in (the set) S'.De�nition (�nite and in�nite sets)A �nite set is one which includes only a �nite number of elements, and an in�nite set is onewhich includes an in�nite number of elements.Examples� The set containing the integers from �1 to 1 inclusive is a �nite set because its elementsare the numbers �1, 0, 1.Some well-known in�nite sets are:� Z { the set of all integers.� N { the set of natural numbers, that is all non-negative integers.� Q { the set of rational numbers. The rational numbers are all numbers that can beexpressed as a fraction of the form pq , where p is an integer and q is a natural number.Notice that this set includes all the integers since any integer z can be written as z1 . Othernumbers in this set include all proper fractions (e.g. 12 ; 3721), all terminating decimals (e.g.0.5, 2.123) and all repeating decimals (e.g. 0.3333...).� Q1 { the set of irrational numbers, that is those numbers that are not rational. Thisincludes, for example, the numbers �, e, p2 and p3.� R { the set of all real numbers, which consists of all rational and irrational numbers.De�ning setsWe often use the following ways to de�ne a set:1. EnumerationIn this form, we simply write the elements of the set between braces f g. For example,A=f2, 4, 6, 8g is the set containing the numbers 2, 4, 6 and 8.As mentioned above, a set is completely de�ned by the di�erent elements it contains. Con-sequently, the order in which its elements appear, or the number of times that a particularelement appears has no impact on the set. So, for example,Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 50A = f2, 4, 6, 8g = f8, 4, 6, 2g = f2, 4, 6, 8, 2g.However, there is a di�erence between a set and the element in the set. For example,fmoong denotes the set containing only the element moon. Consequently, fmoong 6=moon: one is a set containing a single object, the other is the object.Furthermore, an element can be anything, including another set. For example, ff1g, f2ggdenotes the set whose elements are two sets, one containing only the number 1 and theother containing only the number 2.2. Using set comprehensionOften it is di�cult or impossible to actually list all the elements of a set explicitly. Forexample, the set of all natural numbers from 10 to 200 is simply too large to write in thisway. In such cases we can de�ne the set instead using set comprehension, which basicallyde�nes the set by de�ning the properties of its elements.De�nition (set comprehension)Let S be a set and p(x) be a predicate de�ned on the set S. Then the expressionfv 2 S j p(v)gdenotes the set of all elements v of S for which p(v) is true.fv 2 S j p(v)g is read as \the set of all v in S such that p(v)".Examplesfn 2 Z j � 2 � n < 3g is the set of integers between �2 and 3,including �2; i.e. f�2;�1; 0; 1; 2gfn 2 N j 10 � n � 200g is the set of natural numbers from 10 to200 inclusive.fx 2 R j � 10 < x < 10g is the set of real numbers between �10and 10. This is an open interval, whichmeans that the endpoints �10 and 10are not included.fx 2 Z j x2 = 4g is the set of integers x with the propertythat x2 equals 4; in other words, the setf�2; 2gDe�nition (the universal set)The universal set is the largest set within a given universe of discourse; i.e. the set of all theReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 51elements which make up di�erent sets being considered. Typically, the universal set is repre-sented by U.ExampleIf the universe being discussed includes sets made up of rational numbers, integers and naturalnumbers, then the universal set might be de�ned to be the set of all real numbers.De�nition (the empty set)The empty set is the set which contains no elements and is generally written as fg or ;.It may seem that de�ning a set with no elements is unnecessary. However, the empty set is asimportant to problems regarding sets as 0 is to mathematical problems.ExampleThe set fx 2 R j x2 = �1g is empty because there are no real numbers whose square equals �1(because x2 � 0 holds for all real numbers), i.e.fx 2 R j x2 = �1g = fg3.2 Relationships between setsLet A and B be arbitrary sets.De�nition (subset)A is a subset of B, written A � B, if and only if every element of A is also an element of B.We can symbolically write this as A � B = 8a(a 2 A ! a 2 B).According to this de�nition, however, any set A is a subset of itself. Therefore we introduce theterm proper subset.De�nition (proper subset)A is a proper subset of B, written A � B, if and only if A is a subset of B but A is not equalto B (in other words, there exists at least one element in B which is not in A).Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 52De�nition (not a subset of)A is not a subset of B, written A 6� B, if and only if there exists at least one element e whichis in A but not in B, that is 9e(e 2 A ^ e =2 B).De�nition (set equality)Two sets A and B are equal, denoted A=B, if A � B and B � ADe�nition (superset and proper superset)A superset is the opposite of a subset. If A is a subset of B, then B is a superset of A, writtenB � A. Likewise, if A is a proper subset of B, then B is a proper superset of A, written B � A.The relationships of two sets, one of which is a subset of the second one, are shown in Figure 4with a Venn diagram (see Section 2.2.3).
U

A

BFigure 4: A � B and B � AThe negations of all these properties of sets can be de�ned similarly, but we omit them here.ExampleLet A = fn 2 N j n � 6g, B = f1; 3; 7g, C = f2; 4; 6g and D = f5; 2; 1; 3; 4; 6g. Then, forexample, the following relationships hold:� B is not a proper subset of A, i.e. B 6� A� C is a subset of A, i.e. C � A� C is a proper subset of A, i.e. C � A� A and D are equal, i.e. A=D� A is a proper superset of C, i.e. A�CReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 53The following theorem and corollary hold for the empty set.Theorem: The empty set is a subset of every set, that is ; � A for any set A.Proof (by contradiction):Suppose that ; 6� A. By our de�nition of `not a subset of', this means9x(x 2 ; ^ x =2 A).However, ; has no elements, so x 2 ; is false, and hence x 2 ; ^ x =2 A is false. Thus, thestatement 9x(x 2 ; ^ x =2 A) is false, so the theorem is true.Corollary: There is only one empty set, i.e. the empty set is unique.Proof:Let ;1 and ;2 be sets with no elements. Then, by the above theorem, ;1 � ;2 and also ;2 � ;1.So, by the de�nition of set equality ;1 = ;2.3.3 Cardinality and power setDe�nition (cardinality)The cardinality of a set is simply the number of elements in the set. The cardinality of a set Sis denoted by jSj or card S.By the de�nition of proper subset, it is clear that if A � B then the set A must have fewerelements than B if B is �nite, which yields the following statement:A � B) jAj < jBjDe�nition (power set)The power set of a set A is the set of all subsets of A. It is written as P (A) or 2A.For any set A, both fg and A itself are elements of P (A).For any set A the following equality holds:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 54j P (A) j = 2jAjExampleIf A = f1; 2; 3g then P (A) = ffg; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg3.4 Operations on setsNew sets can be formed from existing ones in a variety of ways. We describe some of these, aswell as other relationships between sets which can be constructed from them, here.De�nition (union)The union of two sets A and B is the set of all elements which are in either A or B or both. Itis written as A [B.Symbolically,A [B = fx 2 U j x 2 A _ x 2 BgNote that for any set A the following hold:A [ fg = A and A [U = U.De�nition (intersection)The intersection of two sets A and B is the set of all elements which are in both A and B. Itis written as A \B.Symbolically,A \B = fx 2 U j x 2 A ^ x 2 Bg = fx 2 A j x 2 BgNote that for any set A the following hold:A \ fg = fg and A \U = A.De�nition (disjoint)If A \B = fg, then A and B are said to be disjoint sets. In other words, there is no elementin A which is also in B.De�nition (distributive union and distributive intersection)The distributive union and distributive intersection of sets can be thought of as being generalisa-tions of the union and intersection operators to an arbitrary number of sets. Distributive unionReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Set theory basics 55of sets A1, A2, : : : , An, denoted by Sni=1Ai, is the set constructed by taking the union of allthe elements in all the sets Ai (1 � i � n). Thus, an object is an element of the set Sni=1Ai ifit is an element of some set Ai (1 � i � n).Distributive intersection of sets A1, A2, : : : , An, denoted by Tni=1Ai, is the set constructed bytaking the intersection of all the sets Ai (1 � i � n). Thus, an object is an element of the setTni=1Ai if it is an element of all sets Ai (1 � i � n).De�nition (complement)The complement or absolute complement of a set A, denoted by A (or � A), is the set of allelements that are not in A.Symbolically,A = fx 2 U j x =2 AgNote that this de�nition of the complement of a set requires the existence of a Universal set.De�nition (di�erence)The di�erence of two sets A and B, denoted by A�B (or AnB), is the set of elements whichare in A but not in B. This is also known as the complement of B relative to A.Symbolically,A�B = fx 2 U j x 2 A ^ x =2 Bg = fx 2 A j x =2 Bg.Note that A�B is not equal to B�A in general.The absolute complement of a set A can now be de�ned as A = U�A.De�nition (boolean sum)The boolean sum of two sets A and B is the set A+B consisting of all elements which are inA or in B but not in both.Symbolically,A + B = fx 2 U j (x 2 A ^ x =2 B) _ (x =2 A ^ x 2 B)g = (A�B) [ (B�A)Note that if the two sets A and B are disjoint then A + B = A [BThe union and intersection of two sets can be represented with Venn diagrams in the same wayas the truth sets of p(x)_ q(x) and p(x)^ q(x) were represented in Section 2.2.3. The di�erenceand boolean sum of two sets are shown in Figure 5.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 56
U
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Figure 5: The di�erence and boolean sum of sets A and BDe�nition (ordered pair)An ordered pair is a pair of objects given in a �xed order. It is written as (a; b) where a is calledthe �rst component and b the second component of the pair.De�nition (product sets)The product set of two sets A and B is the set of ordered pairs whose �rst component is takenfrom A and whose second component is taken from B:A�B = f(x; y) j x 2 A ^ y 2 BgIt is also called the Cartesian product, or simply the product of A and B, and A�B is read \Across B".Examples1. Let U be fn 2 Z j 0 � n � 11g,A = fn 2 U j n < 7g, and B = fn 2 U j 3 < n � 9g. Then� A = fn 2 U j n � 7g� B = f0; 1; 2; 3; 10; 11g� A [B = fn 2 U j n � 9g� A \B = fn 2 U j 3 < n < 7g� A�B = fn 2 U j n � 3g� B�A = f7; 8; 9g� A+B = f0; 1; 2; 3; 7; 8; 9gReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 572. Let A = fa; b; cg and B = f1; 2; 3g thenA�B = f(a; 1); (a; 2); (a; 3); (b; 1); (b; 2); (b; 3); (c; 1); (c; 2); (c; 3)g3.5 Laws of set algebraWe often need to prove theorems (properties) about sets.Suppose, for example, we need to prove the equalityA [B = A \BThis can be done as follows:Let x 2 A [B. Then x =2 (A [B). Hence, x =2 A and x =2 B. Hence, x 2 A and x 2 B.Hence, x 2 (A \B).Therefore, A [B � A \B.Now suppose, x 2 (A \B). Then x 2 A and x 2 B.Hence, x =2 A and x =2 B. Hence, x =2 (A [B). Hence, x 2 A [B.Therefore, A \B � A [B.Thus, from A [B � A \Band A \B � A [Bwe conclude that A \B = A [BReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 58This method of proving theorems is called an element-wise proof.Set algebra is the branch of mathematics that uses only the laws and logic of algebra to provetheorems about sets. These laws simplify the study of sets and with them we can prove proper-ties much more easily than using element-wise proofs.Some algebraic laws of sets are listed below.LawsLet U be a universal set, and A, B and C be given sets. Then the following properties hold:� Idempotent lawsA \A = AA [A = A� Associative laws(A \B) \C = A \ (B \C)(A [B) [C = A [ (B [C)� Commutative lawsA \B = B \AA [B = B [A� Distributive lawsA \ (B [C) = (A \B) [ (A \C)A [ (B \C) = (A [B) \ (A [C)� Absorptive lawsA \ (A [B) = AA [ (A \B) = A� Identity lawsA \U = AA [ fg = AA \ fg = fgA [U = U� Complement lawsA \A = fgA [A = UA = AU = fgfg = UReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Set theory basics 59� DeMorgan's lawsA [B = A \B.A \B = A [B.� Alternative set di�erence representationA�B = A \B� Inclusion in unionA � A [BB � A [B� Inclusion in intersectionA \B � AA \B � B� Transitive properties of subsetsIf A � B and B � C then A � CExamples (proofs)� For any sets A and B we have A [ (A \B) = A [BProof: A [ (A \B) = (A [A) \ (A [B) distributive law= U \ (A [B) complement law= A [B identity law� Show that A \ (B [A) = AProof: A \ (B [A) = (A [ fg) \ (B [A) identity law= (A [ fg) \ (A [B) commutative law= A [ (fg \B) distributive law= A [ fg identity law= A identity law� Prove that A = (A [B) \ ((A \B) [B)Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Mappings 60Proof: (A [B) \ ((A \B) [B)= (A [B) \ ((A [B) \ (B [B)) distributive law= (A [B) \ ((A [B) \U) complement law= (A [B) \ (A [B) identity law= A [ (B \B) distributive law= A [ fg complement law= A identity law4 MappingsA way to introduce a relationship between the elements of two sets is mappings which are widelyused in mathematics and computer science. Therefore, we present the notation of mappings inthis section.4.1 IntroductionDe�nition (mapping)Let A and B be sets. A mapping from set A to set B is a relationship between all elements ofA and some or all elements of B in which each element of A is related to a unique element of B.More precisely, a mapping can be thought of as a triple: the source is a set of objects; the rangeis another set of objects; and the relation is a subset S of the Cartesian product of the sourcewith the range, such that for each element s of the source there is exactly one element r of therange such that the pair (s; r) lies in S. Sometimes, such a mapping is referred to as a totalmapping.De�nition (image)For a mapping from A to B, if s is an element of A (i.e. s 2 A) and r is the element of B thatis related to s in the mapping, then r is called the image of s under the mapping, and we saythat the mapping maps s to r and denote this by s 7! r.Let m be a mapping from A to B and let a 2 A. Then the image of the element a under m isdenoted by m(a) and according to the de�nition of mapping this must be some element of B,i.e. the following holds: 8a (a 2 A! m(a) 2 B)De�nition (domain and range)Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Mappings 61For a mapping from A to B the set A is called the domain and the set B the range of themapping.We denote the domain of a mapping m by dom(m) and its range by rng(m).De�nition (�nite and in�nite mappings)A mapping is �nite if its domain is a �nite set and in�nite if its domain is an in�nite set.De�ning mappingsWe often use the following two ways to de�ne a mapping:1. EnumerationWe write a mapping by listing its associations between brackets [ ] explicitly. This issimilar to the enumeration form of a set (see Section 3.1) because a mapping is a set ofunordered associations.Examples� m1 = [A 7! 65; B 7! 66; C 7! 67; a 7! 97; b 7! 98; c 7! 99]is the mapping which maps A to 65, B to 66, C to 67, a to 97, etc.Its domain and range are the sets dom(m1) = fA;B;C; a; b; cg and rng(m1) = f65; 66; 67; 97; 98; 99grespectively.The image of A is 65, and the image of a is 97.Note that the order in which the associations are listed does not matter. So, the mappingwritten above can equivalently be written as:m1 = [A 7! 65; a 7! 97; B 7! 66; b 7! 98; C 7! 67; c 7! 99]� For the mapping m2 = [2 7! true; 3 7! false; 4 7! true; 5 7! false]its domain and range are dom(m2) = f2; 3; 4; 5g and rng(m2) = ftrue; falseg respectively.2. Map comprehensionWe can de�ne a mapping using a notation similar to the one for set comprehension basedon the fact that a mapping is a set of associations. The notationReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Mappings 62[f(s) 7! g(s) j s 2 S ^ p(s)]represents the set of associations of the form f(s) 7! g(s), where f and g are some func-tions of s, for all s belonging to the set S which satisfy the given predicate p.Examples[n 7! �n j n 2 Z ^ (�1 � n � 1)] = [�1 7! 1; 0 7! 0; 1 7! �1][n 7! 2 � n� 1 j n 2 N ^ (n � 4)] = [0 7! �1; 1 7! 1; 2 7! 3; 3 7! 5; 4 7! 7]It is impossible to de�ne an in�nite mapping by enumeration, while it is possible to create anin�nite mapping using map comprehension. For example, the mapping[n 7! 2 � n� 1 j n 2 N ^ (n > 4)]is an in�nite mapping because its domain is the setfn 2 N j n > 4gwhich is in�nite.De�nition (the empty mapping)The empty mapping is the mapping whose domain is the empty set and which thus contains noassociations. It is represented by [ ].For example, the mapping[n 7! 2 � n� 1 j n 2 N ^ (n < 0)]is the empty mapping because its domain is the setfn 2 N j n < 0gwhich is empty.Properties of mappingsDe�nition (injective mapping)A mapping is injective if for each element r of the range of the mapping there is at most oneelement of the domain whose image under the mapping is r.De�nition (surjective mapping)A mapping is surjective if for each element r of the range of the mapping there is at least oneelement of the domain which maps to r under the mapping.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Mappings 63De�nition (bijection)A mapping is a bijection if it is both injective and surjective. Then for each element r of therange of the mapping there is exactly one element of the domain that maps to r. We also saythat the mapping is bijective or a one-to-one correspondence.De�nition (inverse mapping)For a bijection m its inverse mapping is the mapping that maps each element e of rng(m) tothe unique element of dom(m) that maps to e. We denote this by m�1. Thenm�1 = [m(a) 7! a j a 2 dom(m)]ExampleLet B = fa; b; c; dg,A = f1; 2; 3g,A1 = f1; 2; 3; 4; 5g andA2 = f1; 2; 3; 4g, and letm1 = [1 7! a; 2 7! b; 3 7! c] be a mapping from A to B,m2 = [1 7! a; 2 7! b; 3 7! a] also be a mapping from A to B,m3 = [1 7! a; 2 7! a; 3 7! b; 4 7! c; 5 7! d] be a mapping from A1 to B, andm4 = [1 7! d; 2 7! c; 3 7! b; 4 7! a] be a mapping from A2 to B.Then the mapping m1 is injective but not surjective and hence not bijective; the mapping m2is neither injective nor surjective, so also not bijective; the mapping m3 is surjective but notinjective, so not bijective; and the mapping m4 is both injective and surjective and hence alsobijective.The inverse mapping of m4 is m�14 = [d 7! 1; c 7! 2; b 7! 3; a 7! 4].De�nition (permutation)We de�ne the notation of permutations as an example of a mapping, which we then use in ourexamples below. A permutation of the positive integers 1; 2; : : : ; n is a bijection fromNn to itselfwhere Nn = fi 2 N j 1 � i � ng.A more visual way of representing a permutation is to use a two row table (one row per copyof Nn). The �rst row is the domain values and the second is the range values of the bijection.The values in both rows appear in their natural order and straight lines connect each value i toits image. Two such permutations are shown in Figure 6.A cycle in a permutation is a sequence of associations in the permutation in which the domainvalue of each association, except the �rst, is equal to the image of the previous association andReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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mFigure 6: Permutationsthe image of the last association is equal to the domain value of the �rst association. If thereis an element which is mapped to itself then it is considered as one cycle. A cycle can be rep-resented by listing only the domain values of the associations in it. We write this list in braces.For example, the cycles of the mapping m1 shown in Figure 6 are (1,3,2) and (4,6,5), and thecycles of m2 are (1,4,3,6,5) and (2).So, another way to represent a permutation is using a product of cycles in which we write allcycles of the permutation without any delimiters. For example, the permutations representedin Figure 6 can be written asm1 = (1; 3; 2)(4; 6; 5) and m2 = (1; 4; 3; 6; 5)(2).4.2 Relationships between mappingsDe�nition (mapping equality)Two mappings m1 and m2 are equal if and only if their domains are equal, their ranges areequal, and for each element s of the domain m1(s) is equal to m2(s). We write this simply asm1 = m2 and this is de�ned symbolically as(dom(m1) =dom(m2))^(rng(m1) =rng(m2)) ^ 8s(s 2dom(m1)! (m1(s) = m2(s)))4.3 Operations on mappingsDe�nition (product)Let m1 and m2 be two mappings such that the range of m1 is a subset of the domain of m2, i.e.rng(m1) � dom(m2). Then the product of the two mappings is the mapping which maps eachelement s of the domain dom(m1) to the value which is the image of m1(s) under the mappingm2, i.e. to m2(m1(s)). It is denoted by m1 �m2.The product of two mappings is sometimes called the composition of the mappings.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Mappings 65ExampleThe product of the two mappingsm1 andm2 given above in Figure 6 ism1�m2 = (1; 6)(2; 4; 5; 3)and is illustrated in Figure 7.
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Figure 7: The product of two mappingsDe�nition (power)Let m be a mapping, the range of which is a subset of its domain, and let n 2 fi 2 N j i � 1g.Then m^n is the n-fold composition of the mapping m.Examplem1^3 = (1)(2)(3)(4)(5)(6). This is illustrated in Figure 8.
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Figure 8: 3-fold composition of a mappingDe�nition (override)The override operator overrides one mapping with another where priority is given to the asso-ciations in the second operand when the domain values match. It is written m1 ym2 where m1and m2 are mappings.ExampleLet m1 = [1 7! 3; 2 7! 1; 3 7! 2; 4 7! 6; 5 7! 4; 6 7! 5]. Then m1 y [2 7! 3; 3 7! 2; 4 7! 7] = [1 7!3; 2 7! 3; 3 7! 2; 4 7! 7; 5 7! 4; 6 7! 5]. This is illustrated in Figure 9.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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6Figure 9: Overriding of mappingsDe�nition (union)The union operator combines two mappings whose domains are disjoint, simply building the setunion of the associations in the two mappings. It is written m1 [ m2 where m1 and m2 aremappings.Example[1 7! 3; 2 7! 1; 3 7! 2] [ [4 7! 6; 5 7! 4; 6 7! 5] = [1 7! 3; 2 7! 1; 3 7! 2; 4 7! 6; 5 7! 4; 6 7! 5]De�nition (domain subtraction)The domain subtraction operator removes all the associations from a mapping whose domainvalues are in a given set. It is written m \ s where m is a mapping and s is a set.ExampleLetm = [1 7! 3; 2 7! 1; 3 7! 2; 4 7! 6; 5 7! 4; 6 7! 5]. Thenm\f2; 3; 4; 7g = [1 7! 3; 5 7! 4; 6 7! 5]which is illustrated in Figure 10.
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Figure 10: Restricting a mapping by a given setDe�nition (domain restriction)The domain restriction operator removes all the associations from a mapping whose domainvalues are not in a given set. It is written m /s where m is a mapping and s is a set.ExampleLet m = [1 7! 3; 2 7! 1; 3 7! 2; 4 7! 6; 5 7! 4; 6 7! 5]. Then m /f2; 3; 4; 7g = [2 7! 1; 3 7! 2; 4 7!6]. This is illustrated in Figure 11.
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Figure 11: Restricting a mapping to a given setDe�nition (range subtraction)The range subtraction operator removes all the associations from a mapping whose range valuesare in a given set. It is written m 	 s where m is a mapping and s is a set.ExampleLet m = [1 7! 3; 2 7! 1; 3 7! 2; 4 7! 6; 5 7! 4; 6 7! 5]. Then m 	 f2; 3; 4; 7g = [2 7! 1; 4 7! 6; 6 7!5]. De�nition (range restriction)The range restriction operator removes all the associations from a mapping whose range valuesare not in a given set. It is written m � s where m is a mapping and s is a set.ExampleLet m = [1 7! 3; 2 7! 1; 3 7! 2; 4 7! 6; 5 7! 4; 6 7! 5]. Then m � f2; 3; 4; 7g = [1 7! 3; 3 7! 2; 5 7!4].5 Functions5.1 IntroductionLet X and Y be sets.De�nition (partial function)A partial function f from X to Y is a subset of X � Y (the Cartesian product of X and Y)which satis�es the condition that for each x in X there is at most one y in Y such that (x; y) isin f .A given function f is unde�ned for a value x 2 X if there is no y 2 Y such that (x; y) is in f .
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Functions 68De�nition (total function)A partial function is called a total function (or simply function) if for each value x in X there isexactly one y in Y such that (x; y) is in f .We present in this section the basic theory of functions.A function can also be de�ned as follows:De�nition (function)A function f from set X to set Y is a relationship between the elements of the sets X and Y inwhich each element of X is related to a unique element of Y. It is denoted by f : X! Y.Note that according to this de�nition of functions any mapping as de�ned in Section 4.1 is afunction.Notation (function application)We use the notationf(x)which is read \f of x", to represent the element y of Y which is related to x by the function f .The variable x is called the argument of the function f .De�nition (image and preimage)Given an element a in X, there is a unique element b in Y that is related to a and which isdenoted by f(a). We call this b the image of a under f , and a is called the preimage of b.De�nition (domain, co-domain and range)For a function f from X to Y the set X is called the domain of f and Y is called the co-domainof f . The range of the function is the set of all images of elements in X.De�nition (two variable function)Let X, Y and Z be sets.A function f from X�Y (the Cartesian product of the sets X and Y) is a relationship betweenthe elements of X�Y and the set Z where each element of X�Y is related to a unique elementof Z. It is denoted by f : X�Y! Z.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 69We use the notationf(x; y)which is read \f of x and y" or \f of x, y", to represent the application of f to the pair (x; y).The variables x and y are called the arguments of the function f .De�nition (multi-variable function)Let n 2 N (n � 2) and let X1, X2, ..., Xn and Y be sets.A function f fromX1�X2�� � ��Xn (the Cartesian product of the sets) is a relationship betweenthe elements of X1 �X2 � � � � �Xn and the set Y where each element of X1 �X2 � � � � �Xnis related to a unique element of Y. It is denoted by f : X1 �X2 � � � � �Xn ! Y.The application of f to the arguments x1; x2; : : : ; xn is written asf(x1; x2; : : : ; xn).5.2 De�ning functionsFunctions can be de�ned in several di�erent ways:1. Arrow diagramIf X and Y are �nite sets, an arrow diagram depicts a function f from X to Y by drawingan arrow from each element in X to its image in Y. In this case, two properties must holdfor the diagram according to the de�nition of functions:� every element x of X must have an arrow coming out of it.� No element of X can have two or more arrows coming out of it.An example of an arrow diagram is shown in Figure 12.2. TableIf X and Y are �nite sets, a two row table can be used to represent a function f from Xto Y. The �rst row contains all the di�erent values of x in X and the second shows theimage of x under f in each case.ExampleA function is de�ned by the following table:x A B C a b cy 65 66 67 97 98 99Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Figure 12: A function represented by an arrow diagram3. Analytical formWhen the domain of a function is an in�nite set it is impossible to represent the functionusing the two methods described above. A more general way of de�ning a function is togive a formula de�ning the result of the function f(x) in terms of the argument x. Thisformula is called the analytical form of the function.Examples� Suppose a function f is de�ned by the following table:x -2 -1 0 1 2y 0 1 2 3 4Then its analytic form might be f(x) = x+ 2 de�ned on the set f�2;�1; 0; 1; 2g.� Identity function on a setThe identity function on a set X ix : X! Xis de�ned by ix(x) = x.� Absolute value functionis the function f : R! R (denoted by jxj) such thatf(x) = ( x if x � 0�x if x < 0� Polynomial function of degree nis a function f : R! R such thatf(x) = a0 + a1x+ a2x2 + � � �+ anxnwhere ai (0 � i � n) are real constants.� Exponential functionis a function f : R! R+ such that f(x) = axReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 71where R+ = fr 2 R j r > 0g and a is a real constant such that a > 0 and a 6= 1.4. Function machinesFunctions can be thought of as machines or computer programs. Suppose f is a functionfrom X to Y and an input x of X is given. Then f can be imagined as a machine (orprogram) that processes x in a certain way to produce the output f(x).ExampleThe Hamming distance function was invented by the computer scientist Richard W. Ham-ming. It gives a measure of the \distance" between two strings of 0's and 1's that havethe same length.Let S = f0; 1g and n 2 N and let Sn be the set of all string of 0's and 1's of length n.Then the Hamming distance function h : Sn�Sn ! N returns, for a pair in Sn�Sn, thenumber of positions at which the two strings of the pair have di�erent values, i.e.h(s; t) = the number of positions at which s and t have di�erent values.Suppose n = 6. Then S6 is the set of strings comprising any combination of six 0's and1's, and we can apply the distance function to two strings in the set S6. For example,h(110001; 110010) = 2because 110001 and 110010 di�er only in the last two positions.A computer program (or procedure) which evaluates the distance between two such stringsis a function.5.3 Classi�cation of functionsDe�nition (one-to-one function)The function f : X ! Y is called a one-to-one function (or injection) if, and only if, any twodistinct elements x1 and x2 of X have distinct images under f . This can be stated symbolicallyas: f(x1) = f(x2)) x1 = x2or equivalently as x1 6= x2 ) f(x1) 6= f(x2)Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 72Conversely, a function f : X! Y is not a one-to-one function if there exist distinct elements x1and x2 inX such that x1 and x2 have the same image under f , i.e. if f(x1) = f(x2) with x1 6= x2.In terms of arrow diagrams, a one-to-one function takes distinct points of the domain to distinctpoints of the co-domain. A function is not a one-to-one function if at least two points of thedomain are taken to the same point of the co-domain. An example of this is shown in Figure 13.
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Figure 13: a. A one-to-one function. b. A function that is not one-to-oneOne-to-one functions on in�nite setsTo prove a function is one-to-one the method of direct proof is generally used. Consider thefollowing examples.Example: Let f : R! R be a function de�ned by the rulef(x) = 6x� 2Prove that f is one-to-one on R.Proof: Suppose x1 and x2 are real numbers such that f(x1) = f(x2). (We need to show x1 = x2).Then 6x1 � 2 = 6x2 � 2Adding 2 to both sides gives6x1 = 6x2Dividing by 6 on both sides we then arrive atx1 = x2as desired.Example: Let f : R! R be a function de�ned by the ruleReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 73f(x) = 2x2 + 1Prove that f is not one-to-one on R.Proof: Suppose x1 and x2 are real numbers such that f(x1) = f(x2). (We need to show x1 andx2 may be di�erent). Then2x21 + 1 = 2x22 + 1Adding �1 to both sides gives2x21 = 2x22Dividing by 2 on both sides givesx21 = x22Hence, x21 � x22 = 0 or (x1 + x2) � (x1 � x2) = 0The product is equal to 0 if either the �rst or the second multiplier is equal to 0, i.e." x1 + x2 = 0x1 � x2 = 0Hence, we arrive at " x1 = �x2x1 = x2From the �rst equation we conclude that if x2 6= 0 then x1 6= x2 (for example, if x2 = 3 thenx1 = �3) .Hence, f(x1) = f(x2) but x1 6= x2, and therefore f(x) is not one-to-one.De�nition (onto functions)The function f : X! Y is said to be onto (or surjective) if, and only if, each element in Y isthe image of some element of X under the function f , i.e.f is onto if, and only if, 8y(y 2 Y! 9x(x 2 X ^ f(x) = y)) is true.Conversely, a function f : X! Y is not onto if there is some y in Y which is not the image ofany x in X, i.e. if 9y(y 2 Y ^ 8x(x 2 X ^ f(x) 6= y)) is true.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 74ExampleLet f : R! R be a function de�ned by the rulef(x) = 6x� 2Prove that f is onto on R.Proof: Let y 2 R.We need to show that there exists x 2 R such that f(x) = y. If such a real number exists, then6x � 2 = y or x = (y + 2)=6. x is a real number since sums and quotients (except for divisionby 0) of real numbers are real. It follows that f is onto.ExampleLet f : R! R be a function de�ned by the rulef(x) = 2x2 + 1Prove that f is not onto on R.Proof: We need to show that there is some value y 2 R for which there does not exist x 2 Rsuch that f(x) = y.Consider y = �5. Then if f(x) = y for some x we require2x2 + 1 = �5 or2x2 + 1 = �6 orx2 = �3which has no solution for x 2 RHence, the function f is not onto.A function f : X ! Y can be both one-to-one and onto. In this case for any element x in Xthere is a unique corresponding element y = f(x) in Y: for any element y in Y there is someelement x in X such that f(x) = y because f is onto, and there is only one such element xbecause f is one-to-one.In this case, the function f sets up a relationship between the elements of X and Y in whicheach element of X relates to exactly one element of Y and each element of Y relates to exactlyReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 75one element of X. Thus, we give the following de�nition.De�nition (one-to-one correspondence)A function is called a one-to-one correspondence or bijection if it is both one-to-one and onto.An example is shown in Figure 14.
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Figure 14: A function which is a one-to-one correspondenceIf f is a one-to-one correspondence from a set X to a set Y, then there is a function from Yto X under which each element y in Y is related to the unique element x in X which is thepreimage of y under the function f . This function is called the inverse function of f .De�nition (inverse function)Suppose f : X ! Y is a one-to-one correspondence. Then the function f�1 : Y ! X de�nedas f�1(y) = x if, and only if y = f(x)is the inverse function of f .The diagram in Figure 15 shows that an inverse function \sends" each element back to where itcame from.Finding the inverse function of a function given by a formulaSuppose f(x) = y is a one-to-one correspondence and is given by a formula. Then it has aninverse function. To �nd this function we usually rewrite the formula so as to express x in termsReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Functions 76
x-1f (y) = f (x)y

-1f

=

f
X Y

Figure 15: A function f and its inverse function f�1of y.ExampleLet f : R! R be a function de�ned by the rulef(x) = 6x� 2It has already been shown above that f is one-to-one and onto. Hence f is a one-to-one corre-spondence and has an inverse function f�1. Find the function f�1.Solution: By the de�nition of f�1f�1(y) = x whenever f(x) = yBut f(x) = 6x� 2. So, we have 6x� 2 = y.Solving this equation for x, we arrive at x = y+26Hence f�1(y) = y+26 .5.4 Composition of functionsLet g : X! Y1 and f : Y! Z be functions such that Y1 � Y.
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Functions 77De�nition (composition of functions)The composition of functions f and g, which is denoted by f � g, is a function from X to Z suchthat (f � g)(x) = f(g(x)) for all x in X.The diagram in Figure 16 demonstrates the composition of two functions.
x (x)gfg (

f g
f g

)(x)g f

)( (x)=

ZX Y

Figure 16: Composition of two functionsExampleLet g : R ! R be de�ned by g(x) = x2 + 2, and let f : R ! R be de�ned by f(x) = 3x + 4.Then (f � g)(x) = f(g(x)) = 3(x2 + 2) + 4 = 3x2 + 6 + 4 = 3x2 + 10(g � f)(x) = g(f(x)) = (3x+ 4)2 + 2 = 9x2 + 24x+ 16 + 2 = 9x2 + 24x + 18.Function composition satis�es two important properties:1. Composition with the identity functionLet g be the identity function. Then f � g = f holds for every function f .2. Composing a function with its inverseLet f be a one-to-one correspondence. Thenf � f�1 and f�1 � fare identity functions.
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Relations 786 Relations6.1 IntroductionThe term `relation' is used to describe a relationship between one object and another. In thecase we are discussing, the `one object and another' happen to be the elements of sets. Forexample, given elements a and b in R, a < b, a = b, and a2+1 > b are all examples of the manylegitimate relationships between these two elements.De�nition (n-ary relation)An n-ary relation R between sets A1, A2, : : : , An is a subset of A1 �A2 � � � � �An:R = f(x1; x2; : : : ; xn) 2 A1 �A2 � � � � �An j p(x1; x2; : : : ; xn)gwhere n 2 N (n � 2), and p is a predicate representing the properties of the elements of therelation R.n is called the arity of the relation R.De�nition (binary relation)A relation R of arity 2 is called a binary relation from A1 to A2. A1 is called the domain andA2 the co-domain of the relation. If (x; y) is in R, we denote this by xRy.De�nition (relation on a set)If S = A1 = A2 = � � � = An for a relation R, then R is called a relation on the set S.Examples� Let A = f1; 2; 3g and B = f4; 5; 6g, and let R be a binary relation de�ned on A �B asfollows: f(x; y) j y=x 2 ZgThen R = f(1; 4); (1; 5); (1; 6); (2; 4); (2; 6); (3; 6)g.Like functions, binary relations can be represented by arrow diagrams. To create an arrowdiagram for the above example, we create regions for A and B and list the elements of theReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 79sets as points. Then we draw an arrow from each x in A to each y in B where (x; y) 2 R(see Figure 17).
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Figure 17: A relation represented by an arrow diagram� Let S = f�2;�1; 0; 1; 2g, and let R be a relation on S de�ned as follows:f(x; y) j x = �y _ x=y = �2gThen R = f(�2; 2); (�1; 1); (0; 0); (1;�1); (2;�2); (2;�1); (�2; 1)g.Because the relation is de�ned on a single set, an arrow diagram for R becomes a directedgraph. Instead of creating two regions and mapping from one region to the other we listthe elements of S as points in a single region and draw an arrow between points which arerelated to each other under R (see Figure 18). In such a directed graph the elements of Sare called vertices and the elements of R (i.e. the ordered pairs that are in R) are edges;the vertices joined by an edge are the endpoints of the edge; an edge with just one end-point is called a loop. There are 5 vertices and 7 edges, one of which is a loop, in Figure 18.
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0Figure 18: A binary relation on a set� Let p(x; y; z) be a predicate on R such that `x, y and z are the coordinates of the verticesof a cube, the ends of one diagonal of which are the points (0, 0, 0) and (1, 1, 1)', and leta ternary relation be de�ned asReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 80R = f(x; y; z) 2 R�R�R j p(x; y; z)gThen R is equal tof(0; 0; 0); (1; 0; 0); (1; 1; 0); (0; 1; 0); (0; 0; 1); (1; 0; 1); (1; 1; 1); (0; 1; 1)g6.2 Functions and relationsIn what follows in this section, we focus on binary relations on a set S.According to the de�nition, a binary relation is a subset of a Cartesian product, and Cartesianproducts are de�ned as sets of ordered pairs. Therefore, binary relations can be de�ned usingonly set theory. We have already de�ned functions in Section 5.1. Now it is possible to de�ne afunction in terms of binary relations as follows:De�nition (functions in terms of binary relations)A function f from set X to set Y is a relation with the following two properties:1. for every element x in X, there exists an element y in Y such that (x; y) 2 f ;2. for all elements x in X and y and z in Y, if (x; y) 2 f and (x; z) 2 f , then y = z; i.e. eachelement x in X is related to a unique element y in Y.It is important to remember that the elements in a relation are ordered pairs, so that x and ymust be used in the correct order. f(x) = y if and only if y is the second element of the pair inf of which x is the �rst element.A relation can also be de�ned as a function as follows.Let Bool be the set ftrue, falseg.De�nition (binary relations in terms of functions)A binary relation on a set S is a function r : S � S ! Bool such that r(x; y) is true for every(x; y) 2 S� S for which x and y are related and false otherwise.ExampleLet S = f�2;�1; 0; 1; 2g, and let R be a relation on S as follows:Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 81f(x; y) j x = �y _ x=y = �2gThis relation can be written as the following function:r(x; y) =`x = �y _ x=y = �2'which is true for each pair in the setf(�2; 2); (�1; 1); (0; 0); (1;�1); (2;�2); (2;�1); (�2; 1)gbut false for all other pairs in S� S.6.3 Classi�cation of binary relationsLet r be a binary relation on a set S, i.e.r : S� S! BoolDe�nition (re
exive relation)r is re
exive if and only if r(x; x) is true for every element x in S, i.e. if 8x(x 2 S ! r(x; x))then r is re
exive.De�nition (irre
exive relation)r is irre
exive if and only if r(x; x) is false for every element x in S.Note that r can be neither re
exive nor irre
exive.De�nition (symmetric relation)r is symmetric if and only if r(x; y) = r(y; x) for every x and y in S.De�nition (antisymmetric relation)r is antisymmetric if and only if r(x; y) and r(y; x) are both true only if x = y for every x andy in S.This means that, for an antisymmetric relation on S, only one of r(x; y) and r(y; x) can be truefor all distinct elements x and y in S.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 82Note that r can be both symmetric and antisymmetric, and r can be neither symmetric norantisymmetric.De�nition (transitive relation)r is transitive if and only if whenever r(x; y) and r(y; z) are both true, r(x; z) is also true forevery x, y and z in S.In the directed graph representation these properties correspond to the following properties ofthe graph: re
exive: Every vertex has a loop.irre
exive: No vertex has a loop.symmetric: If there is an edge from one vertex to another, thenthere is an edge in the opposite direction.antisymmetric: There is at most one edge between distinct vertices.transitive: If there is an indirect path linking two vertices viaone or more intermediate vertices, then there is alsoan edge linking the two vertices directly.ExampleConsider the following relations on Z.R1 = Z� ZR2 = f(x; y) 2 Z�Z j x = ygR3 = f(x; y) 2 Z�Z j x < ygR4 = f(x; y) 2 Z�Z j x � ygR5 = f(x; y) 2 Z�Z j `x is divisible by y'gThe table below shows the properties of each of these relations:R1 R2 R3 R4 R5re
exive p p p pirre
exive psymmetric p pantisymmetric ptransitive p p p p pDe�nition (equivalence relation)A binary relation on S is called an equivalence relation on S if and only if it is re
exive, sym-metric and transitive.ExampleLet n be a positive integer and let R be the relation de�ned byReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 83R= f(i; j) 2 Z� Z j 9k(k 2 Z ^ k � n = i� j)g� R is re
exive, since 0 � n = i� i for every i 2 Z.� R is symmetric, since if k � n = i� j then (�k) � n = j � i, i.e. if (i; j) 2 R then (j; i) 2 R.� R is transitive.Proof: Suppose that (i; j) 2 R and (j;m) 2 R. Then there are integers k1 and k2 such thatk1 � n = i� j and k2 � n = j �m. Thus, we havek1 � n+ k2 � n = (i� j) + (j �m) or(k1 + k2) � n = (i�m) where k1 + k2 is an integer.Hence, (i;m) 2 R.Therefore, R is an equivalence relation on Z.De�nition (order relations)A partial order on S is a re
exive, antisymmetric and transitive binary relation on S.Elements x and y in S are said to be comparable in a relation R if and only if either (x; y) or(y; x) is in R.A partial order on S is called a total order (or linear order) on S if and only if for every x andy in S, x and y are comparable.ExampleThe relation \less than or equal to" � on N is a partial order.Proof:� Re
exive: For every i 2 N, i � i is true.� Antisymmetric: Both i � j and j � i hold only if i = j.� Transitive: If i � j and j � k hold, then i � k holds.Thus, � is a partial order on N. In fact any two numbers are comparable, therefore � is a totalorder.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 846.4 Operations on relationsLet R1 and R2 be binary relations from X to Y.1. Relations are sets of ordered pairs. Therefore, we can de�ne some operations on relationswhich are similar to the operations on sets.� UnionR1 [R2 = f(x; y) 2 X�Y j (x; y) 2 R1 _ (x; y) 2 R2g� IntersectionR1 \R2 = f(x; y) 2 X�Y j (x; y) 2 R1 ^ (x; y) 2 R2g� Di�erenceR1 �R2 = f(x; y) 2 X�Y j (x; y) 2 R1 ^ (x; y) =2 R2g� ComplementR1 = X�Y�R1g2. Inverse (or Converse)The inverse R�1 of a given relation R from X to Y is de�ned by:R�1 = f(x; y) 2 X�Y j (y; x) 2 Rg3. CompositionLet R1 be a binary relation from X to Y and R2 be a binary relation from Y to Z.The composition R1�R2 of the two relations R1 and R2 is the relation de�ned as follows:R1�R2 = f(x; z) 2 X� Z j 9y((x; y) 2 R1 ^ (y; z) 2 R2)gExampleLet R1 = f(a; a); (a; b); (b; d)g and R2 = f(a; d); (b; c); (b; d); (c; b)g be relations on the setfa; b; c; dg.Then R1�R2 = f(a; d); (a; c)g.6.5 Transitive and re
exive closuresSuppose we are given a set S = fa; b; c; d; eg, and a relation R de�ned on the set S as follows:R= f(a; e); (e; d); (d; c); (e; c); (c; b)gConsider the directed graph of R (see Figure 19). The given graph is not transitive. Whatassociations would have to be added to make this directed graph transitive?
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Relations 85
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Figure 19: A given intransitive relationBeginning from the vertex a and working around the graph, we would need to add the edges(a; d), (a; c), (e; b) and (d; b) to complete the triangles in this graph, the result of which is shownin Figure 20 (a). What we have done is add associations to the relation R to form a new relation,which we denote by R+. Thus,R+ = f(a; e); (e; d); (a; d); (d; c); (e; c); (a; c); (c; b); (e; b); (d; b)g
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Figure 20: The transitive closure of the relationNote that R � R+, that is all pairs in R are also contained in R+. However, R+ is still nottransitive. Adding new associations has created new subsets of elements which are not transi-tive. For example, aRd and dRb, but � (aRb). Therefore, more edges must be added to createa transitive graph, as shown in Figure 20 (b). The new relation which has been created, whichis denoted by Rt, is transitive.The process of creating a transitive relation Rt from an intransitive relation R is accomplished bysystematically adding new associations to R. More speci�cally, we wish to add the least numberof associations possible in order to obtain a transitive relation. The relation created in this wayis called the transitive closure of the relation R.The transitive closure of a relation R satis�es the following properties:1. Rt is transitive.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 862. R is a subset of Rt, i.e. R � Rt.3. If S is any other transitive relation such that R � S, then Rt � S, i.e. the transitive closureRt is the minimal transitive relation containing the relation R.De�nition (re
exive and transitive closure)Let R be a relation de�ned on a set S. Then, the re
exive and transitive closure of the relationR is the relation R� de�ned on S, as follows:R� = Sn�0Rnwhere Rn are binary relations on S such thatsR0t i� s = tsRnt i� 9u(sRn�1u ^ uRt) if n > 0The following properties hold for these relations:1. R1 = R2. sR�t i� 9n � 0;9s0; : : : ;9sn 2 S with s0 = s; sn = t, and siRsi+1 for all i < n.3. sR�t is re
exive and transitive.4. If T is any re
exive and transitive relation on S such that R � T , then R� � T . That isR� is the smallest re
exive and transitive relation on S that contains R.7 Recursion7.1 IntroductionWhat is Recursion?Recursion (in mathematics and in programming) is a technique for de�ning a problem in termsof one or more smaller versions of the same problem. The solution to the problem is built outof the results from the smaller versions.ExampleLet n 2 N. Then the following functions are recursive functions since each of them uses itselfin its de�nition (or to compute its own value).Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 871. The factorial of nn! = ( 1 if n = 0n � (n� 1)! if n > 02. The exponential functionan = ( 1 if n = 0a � an�1 if n > 0 where a is any real number (a 6= 0).3. The Fibonacci sequenceF (n) = 8><>: 1 if n = 01 if n = 1F (n� 1) + F (n� 2) if n � 2In mathematics such functions are called recurrences and in programming a routine that callsitself is termed recursive.Thus, recursion is the concept of well-de�ned self-reference. Self-referential de�nitions can bedangerous if we are not careful to avoid circularity. \A rose is a rose" is not a recurrence.Therefore, the de�nition of recursion should include the word well-de�ned.Problems that lend themselves to recursive solutions have the following characteristics:1. The problem can be rede�ned in terms of one or more subproblems, identical in nature tothe original problem but in some sense smaller in size.2. One or more base cases of the problem have direct or known solutions.3. By applying this rede�nition process to ever smaller subproblems, eventually the problemis reduced entirely to the base cases.4. The base case solutions can be used in some way to build the solution to the whole problem.A base case is an instance of the problem whose solution requires no further recursive de�nition(or call). It is a special case whose solution you know. Every recursive de�nition requires atleast one base case in order to be valid. A base case has two purposes:� It acts as a terminating condition. For example, without an explicitly de�ned base case arecursive routine would call itself inde�nitely.� It is the building block of the complete solution of the problem. For example, a recursiveroutine determines the �nal result from the base case it reaches.
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Recursion 88Key conceptsWhen we attempt to construct a recursive solution of a problem we should keep in mind thefollowing four questions:1. How can we de�ne the problem in terms of one or more smaller problems?2. What instances of the problem can serve as the base cases?3. As the problem size diminishes will we reach these base cases?4. How are the solutions from the smaller problems used to build a correct solution to thelarger problem?It is not necessary or even desirable to ask ourselves the above questions in strict order. Forexample sometimes the solution to a problem is easier to envisage if we �rst ask ourselves whatinstances can serve as the base cases and then de�ne the problem in terms of smaller problemsof the same type which are closer to the base cases.We demonstrate how to construct recursive functions in the next sections.7.2 If expressionsThe recursive de�nition of functions generally consists of an if statement with the following form:if (this is a base case)then solve it directlyelse if (this is not a base case)rede�ne the problem using recursionend ifTherefore, we begin by introducing if expressions which we then use in the following examples.De�nition (if expression)An if expression is an expression of the formif pred then expr1 else expr2 endwhere the predicate pred is used to choose between the evaluation of two alternative expressionsexpr1 and expr2.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 89If the predicate pred evaluates to true the expression expr1 is evaluated, otherwise the expressionexpr2 is evaluated. The two expressions expr1 and expr2 must be the same type, in the sensethat these expressions take values from the same set. This type is also the type of the entire ifexpression.Examples� The expression if x � 0 then x else �x endreturns the absolute value of a real number x.� The expression if n � m then n else m endreturns the greater of the two integers m and n.If expressions can be nested as follows:if pred1then expr1elseif pred2then expr2else expr3endendwhere all the expressions expr1, expr2 and expr3 should be of the same type.7.3 Explicit de�nition of functionsIn Section 5.2 the absolute value function was de�ned asf : R! R such thatf(x) = ( x if x � 0�x if x < 0Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 90The �rst expression is called the signature (or header), and the second is the expression de�ningthe result of the function f(x) in terms of the argument x. These two parts of the de�nition canbe merged into one de�nition called an explicit function de�nition. For example, the absolutevalue function can be de�ned using an if expression as follows:f : R! Rf(x) =if (x � 0)then xelse �xendend fwhere the variable x is called the formal parameter of f and takes any value from the domainR.This style of de�ning functions is typical in programming languages and it is probably familiarto the reader. Therefore, we use it in our examples below.7.4 Factorial functionProblemThe problem is to compute the factorial of a natural number n recursively.DesignThe familiar iterative de�nition of the factorial of n (or n!) isn! = n � (n� 1) � (n� 2) � � � 1 for n > 00! = 1We have four questions to answer:1. How can we de�ne the problem in terms of smaller problems of the same type?We need to de�ne n! in terms of the factorial of a smaller number:
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Recursion 91n! = n � (n� 1)! for n > 02. What instance of the problem can serve as the base case? The smallest number for whichwe can calculate the factorial is 0. Thusn = 0 is the natural choice for our base case.0! = 1 by de�nition.3. As the problem size diminishes will we reach this base cases?Since each application of the function reduces the parameter n by 1, and n is non-negative,we will always reach the base case n = 0 eventually.Now, we de�ne the function factorial as follows:factorial : N ! Nfactorial(n) =if (n = 0)then 1else n � factorial(n� 1)endend factorial4. How is the solution from the smaller problem used to build a correct solution to the largerproblem?The result returned from the call to factorial(n�1) is multiplied by n to obtain factorial(n).As you can see, the recursive function directly mimics the above recursive de�nition. This sim-ilarity between de�nition and implementation is a principal attraction of recursion.7.5 Tracing a recursive functionDoing a trace by hand of multiple calls to a recursive function (for one or two simple examples)can be helpful in understanding how a recursion works. We note that it is less useful whentrying to develop a recursive function (or algorithm).In Table 1 a trace of the events in the evaluation of factorial(3) is shown. We write all theevents for a particular call to the function factorial(n) in the same column. Here, \!" denotesentry to and \ " denotes exit from the function call named at the head of the column. (RecallReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 92that we use T instead of true and F instead of false.)factorial(3)! 3 = 0 Fresult is 3 � factorial(2)! 2 = 0 Fresult is 2 � factorial(1)! 1 = 0 Fresult is 1 � factorial(0)! 0 = 0 Tresult is 1 return(1)result is 1 � 1 return(1)result is 2 � 1 return(2)result is 3 � 2 return(6) Table 1: Tracing the function factorialThe number 6 is returned to the calling environment. Note that the multiplication operation isperformed after the call to factorial(n� 1) returns a value.7.6 The greatest common divisorThe greatest common divisor (gcd) of two integers is the largest integer that divides them both.We recall that m mod n is the remainder of m divided by n; for example, 5 mod 2 = 1,3 mod 5 = 3, 4 mod 2 = 0, 2 mod 2 = 0, etc.ProblemThe problem is to calculate the gcd of two non-negative integers m and n recursively.DesignEuclid's algorithm for �nding gcd(m;n) can be de�ned recursively as follows:gcd(m;n) = ( m if n = 0gcd(n;m mod n) if n > 0Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 93Is this de�nition su�cient to be implemented as a recursive function? We consider the fourquestions again.1. Clearly gcd(m;n) has been de�ned in terms of a problem of the same type, butis gcd(n;m mod n) smaller in size?The value of (m mod n) lies in the range 0; 1; : : : ; n � 1. In other words, (m mod n) isalways less than n. Thus, ifm > n at the start, then gcd(n;m mod n) is a smaller problemthan gcd(m;n).If m � n at the start, then (m mod n) = m and the �rst recursive step gcd(n;m mod n) isequivalent to gcd(n;m). This has the e�ect of exchanging the parameter values m and n.So after the �rst call we are back in the situation where the �rst parameter is greater thanthe second. Therefore, after the second recursive step gcd(n;m mod n) would be smallerthan the original problem.2. If n = 0 then gcd(m;n) = m by the de�nition of the function. So, our base case is whenn = 0.n = 0 holds if and only if (m mod n) = 0 which means that n divides m.3. As the parameters m and n decrease with every call (except maybe the �rst call as men-tioned above) and 0 � (m mod n) < n we are sure to reach the base case (m mod n) = 0eventually.Now, we de�ne the function gcd as follows:gcd : N�N! Ngcd(m;n) =if (n = 0)then melse gcd(n;m mod n)endend gcdNote that this function returns 0 if both parameters are equal to 0. Thus this case shouldbe explicitly considered in the calling environment.4. How is the solution from the smaller problem used to build a correct solution to the largerproblem?In this function the result from the smaller gcd(n;m mod n) is the direct solution to thelarger problem gcd(m;n). All the function has to do is �nd the solution of the base caseand return it unchanged until it reaches the original problem.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 94In Table 2 we show a trace of the events in the evaluation of gcd(18; 48).gcd(18; 48)! 48 = 0 Fresult is gcd(48; 18)! 18 = 0 Fresult is gcd(18; 12)! 12 = 0 Fresult is gcd(12; 6)! 6 = 0 Fresult is gcd(6; 0)! 0 = 0 Tresult is 6 return(6)result is 6 return(6)result is 6 return(6)result is 6 return(6)result is 6 return(6) Table 2: Tracing the function gcdThe number 6 is returned to the calling environment.7.7 Intermediate recursion exampleLet N1 be the set fi 2 N j n � 1g and let n 2 N1 be a given number.ProblemA scientist wishes to make a safe chain of length n out of plutonium and lead pieces under thefollowing conditions:� No two plutonium pieces can be next to each other.� Pieces of the same element are indistinguishable.� There are at least n pieces of plutonium and n pieces of lead.� Order is signi�cant, i.e. the chains lead-plutonium and plutonium-lead, for example, areconsidered to be two di�erent chains.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 95The problem is to compute recursively how many ways we can construct a safe chain of length n.Design1. How can we de�ne the problem in terms of one or more smaller problems of the same type?There are two classes of safe chains: chains that end with a lead piece, and chains thatend with a plutonium piece.Let c(n) = the number of safe chains of length n,l(n) = the number of safe chains of length n ending with a lead piece, andp(n) = the number of safe chains of length n ending with a plutonium piecebe functions on N1.Then, it is clear that c(n) = l(n) + p(n).A safe chain of length n that ends with a lead piece is simply any safe chain of length n�1with a lead piece tacked onto the end. Therefore,l(n) = c(n� 1)A safe chain can end with a piece of plutonium if and only if the piece before it is a leadpiece. That is, a safe chain of length n that ends with a plutonium piece is a safe chain oflength n� 1 that ends with lead. Therefore,p(n) = l(n� 1) = c(n� 2) (by substitution from above)So, we arrive at c(n) = l(n) + p(n) = c(n� 1) + c(n� 2)This recursive relation introduces a new point: there may be cases where we solve aproblem by solving more than one smaller problem of the same type.2. What instances of the problem can serve as the base cases?In this case, we should be careful to de�ne the base cases. If we simply say that c(1) isthe base case then what happens when c(2) is called?c(2) = c(1) + c(0), but c(0) is unde�ned, which makes c(2) unde�ned. Therefore, it isnecessary to give c(2) an explicit de�nition, i.e. to make it a second base case. Thus, thebase cases are:c(1) = 2 because there are chains that consist of a single piece of lead or plutonium.c(2) = 3 because there are chains that consist of pieces: lead-plutonium, plutonium-lead,and lead-lead.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 963. As the problem size diminishes will we reach the base cases? Since n is a positive integerand each call to the function reduces the parameter n by 1 or 2, we will always reach thebase cases n = 1 and n = 2.The function can be de�ned as follows:c : N1 ! Nc(n) =if (n = 1)then 2else if (n = 2)then 3else c(n� 1) + c(n� 2)endendend c4. How are the solutions from the smaller problems used to build a correct solution to thelarger problem? The recursive step adds the results from the two smaller problems toobtain the solution to the larger problem.7.8 Advanced recursion exampleThe Towers of Hanoi problem is a classic case study in recursion. It involves moving a numberof di�erent size disks, stacked on a peg in order of decreasing size, from one tower to anotherusing a third tower as an auxiliary under the constraints that only one disk may be moved atany time and a larger disk can never be on top of a smaller disk. Legend has it that at thecreation of the world, the priests of the Temple of Brahma were given this problem with 64 disksand told that when they had completed the task the world would come to an end.ProblemMove n disks from peg A to peg C, using peg B as needed, according to the following rules:1. Only one disk may be moved at a time.2. This disk must be the top disk on a peg.3. A larger disk can never be placed on top of a smaller disk.Design
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Recursion 971. How can we de�ne the problem in terms of one or more smaller problems of the same type?The key to the problem is not to concentrate our attention on the �rst step (which mustbe to move the smallest disk from A to somewhere) but on the hardest step, i.e. movingthe bottom disk to peg C.There is no way to move the bottom disk until the top n � 1 disks have been moved.Furthermore they must have been moved to peg B to allow us to move the bottom disk topeg C.We then have n� 1 disks on peg B which must be moved to peg C using peg A (which isfree at this moment).So the problem \move n disks from peg A to peg C using peg B" is equivalent to thefollowing sequence of subproblems:� move n� 1 disks from peg A to peg B using peg C� move the n'th disk from peg A to peg C.� move n� 1 disks from peg B to peg C using peg ANotice that the size of the Towers of Hanoi problem is determined by the number of disksinvolved. This implies that we have rede�ned the problem in terms of 3 smaller problemsof the same type.2. What instances of the problem can serve as the base cases?If n = 1 then the problem consists of moving 1 disk from a given peg to another, whichwe can solve immediately.3. As the problem size diminishes will we reach the base case?Since each call to the function reduces the parameter n by 1, and n is positive, we alwaysreach the base case n = 1.4. How are the solutions from the smaller problem used to build a correct solution to thelarger problem?When all the three smaller problems are �nished the larger problem is completed.To de�ne a recursive function let Peg be the set of three pegs, Tower be a set of well-de�nedtowers in the sense that any tower consists of three pegs with disks stacked smaller ones onlarger ones in some way, and letReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Recursion 98take put : Peg � Peg � Tower ! Towerbe a function which moves the top disk from one peg to another in a given tower. Then we cande�ne the function which moves n disks from peg1 to peg2 using peg3 in the tower as follows:move : N� Peg � Peg � Peg � Tower ! Towermove(n; from; to; use; t) =if (n = 1)then take put(from; to; t)elsemove(n� 1; use; to; from;take put(from; to;move(n� 1; from; use; to; t)))endend moveHow long will it take to move the complete tower or for the world to end? To answer thisquestion, let M(n) be a function representing the number of moves the recursive function moverequires to move an n-disk tower. We de�ne this function recursively.The base case should be n = 1. A single disk is moved directly, i.e. M(1) = 1. According to thede�nition of the function move above, we see thatM(n) = 2M(n� 1) + 1 n > 1.Therefore the number of moves required is M(n) = 2n � 1.7.9 A �nal wordIn this section we have presented recursion as a method for de�ning problems. We have not con-sidered the recursive solution of problems or how recursion is actually implemented on a machine.Recursion is a very powerful tool for constructing computer routines that otherwise can be quitecomplex, particularly when the problem is already de�ned in recursive terms. For such problemsrecursion can lead to solutions that are much clearer and easier to modify than their iterativecounterparts.
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Induction 99However, such recursive de�nitions do not guarantee that a recursive routine is the best wayto solve a problem. Depending on the implementation available, recursion can require a sub-stantial amount of runtime overhead. Thus, the use of recursion illustrates the classical tradeo�between time spent constructing and maintaining a program and the cost in time and memoryof executing that program.We consider the questions of when the use of recursion is appropriate for computing and whenit is not to be beyond the scope of this paper and so do not discuss them here.8 Induction8.1 IntroductionScienti�c discovery often arises from the recognition of a pattern. There are two main aspectsof inquiry in science whereby new results can be discovered:1. deduction, and2. induction.In deduction we accept certain statements as premises and axioms and deduce other statementson the basis of valid inferences.Induction is the process of discovering general laws by observation and experimentation. Ininduction we arrive at a conjecture for a general rule by inductive reasoning and prove it byverifying.8.2 Inductive de�nitionsLet S be an in�nite set to be de�ned. Then an inductive de�nition of S consists of the followingthree components.1. Base clause (or Basis) establishes that a �nite number of particular objects are elementsof the set S.2. Inductive clause (or Induction) establishes a way to obtain a new element of S fromsome of the previously de�ned elements.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Induction 1003. Extremal clause asserts that nothing else is in the set S other than elements obtainedby applying (1) and (2).The extremal clause can take various forms:� An object is an element of the set S if and only if it can be deduced to be so using only a�nite number of applications of the base and inductive steps.� The set S is the smallest set which satis�es the base and inductive steps.� The set S is the set which satis�es the base and inductive steps but which has no propersubset which satis�es them.� The set S is the intersection of all sets which satisfy the properties speci�ed by the baseand inductive steps.Sometimes the extremal clause is left implicit. The recursive de�nition of a problem (see Sec-tion 7.1) is an example of inductive de�nitions.Below we give a more precise de�nition.De�nition (inductive de�nition)Let S be an in�nite set to be de�ned, and let n and m be �nite natural numbers. An inductivede�nition of S is a de�nition with the following three properties:1. Base cases: Objects b1; b2; : : : ; bn are elements of the set S, i.e. bi 2 S for all i such that1 � i � n2. Constructor functions: The functionsg1 : S! Sg2 : S! S...gm : S! Sestablish ways to obtain new elements from some of the previously de�ned elements of theset S.3. Extremal clause asserts that nothing else is in the set S other than elements obtainedby applying (1) and (2).ExamplesReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau



www.manaraa.com

Induction 101� Suppose that the universe is the set N. Then the set E of even integers can be de�nedinductively as follows:1. Base case: 0 is in E, i.e. 0 2 E.2. Constructor functions: The functions g1(n) = n� 2 and g2(n) = n+2 both generateeven integers. That is, if n is in E then g1(n) 2 E and g2(n) 2 E.3. Extremal clause: No integer is in E unless it can be shown to be so by a �nite numberof applications of clauses (1) and (2). We write this symbolically as follows:8e 2 E (e = 0 _ 9n 2 E(e = g1(n) _ e = g2(n)))� Consider the Fibonacci sequence of numbers:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...The �rst two members of the sequence are both 1, while each succeeding member is thesum of the two members immediately preceding it.Let's de�ne this sequence inductively. It is more convenient if we begin numbering oursequence at 0.1. Base cases: F (0) = 1 and F (1) = 1 are both members of the sequence.2. Constructor function: Now we consider the other members. To get a new member(e.g. the (n+1)th member) we de�ne a constructor function as follows:F (n) = F (n� 1) + F (n� 2) for all n � 2This is a recurrence because F is de�ned in terms of itself.3. Extremal clause: All Fibonacci numbers are obtained by applying (1) and (2).8.3 Proof by inductionThe concept of induction also provides powerful techniques for proving assertions of the form`forall x p(x)', where p(x) is a predicate and the universe is an inductively de�ned set (e.g. theset of natural numbers).A proof by induction consists of two steps which correspond to the base and inductive clausesof the de�nition of the universe S respectively.1. Base step establishes that p(x) is true for every element x speci�ed as a base case in thebase clause of the de�nition of S.2. Inductive step establishes that p(x) is true for each element x constructed by the con-structor functions of the de�nition of S, assuming that p(y) is true for all elements y usedin the construction of x (this is called the induction hypothesis).Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Induction 102Since the extremal clause in the de�nition of S guarantees that all elements of S are constructedusing only the base cases and the constructor functions, p(x) holds for all elements of S.ExampleLet A be a set which contains only the left and right square brackets, i.e. f [ ; ] g and let S be aset of strings over A such that1. Basis: [ ] is an element of S.2. Induction: If x and y are elements of S, then[x] and xy (i.e. the concatenation of the two strings) are elements of S.3. S consists of all strings which can be constructed by a �nite number of applications of (1)and (2).Problem: Let l(x) denote the number of left parentheses in some element x of S, and let r(x)denote the number of right parentheses in x.Prove that l(x) = r(x) for all x 2 S.Proof by induction1. Basis: x = [ ] in S.Since l(x) = 1 and r(x) = 1, l(x) = r(x) holds for the base case.2. Induction: Assume that l(x) = r(x) and l(y) = r(y) for x and y in S. ThenConstructor 1: Consider [x] which is in S.l( (x) ) = l(x) + 1 and r( (x) ) = r(x) + 1By induction hypothesis l(x) = r(x), so l(x) + 1 = r(x) + 1.Hence l( (x) ) = r( (x) ) holds.Constructor 2: Consider xy which is in S.l(xy) = l(x) + l(y) and r(xy) = r(x) + r(y)By induction hypothesis l(x) + l(y) = r(x) + r(y).Hence l(xy) = r(xy) holds.Therefore, l(x) = r(x) holds for all x in S.
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Induction 1038.4 First principle of mathematical inductionLet p(n) be a predicate on N.De�nition (�rst principle of mathematical induction)The �rst principle of mathematical induction is an inference rule of the following form:if p(0) ^ 8k (p(k)! p(k + 1)),then 8n p(n)Proof technique1. Basis: Show that p(0) is true, using any appropriate proof technique.2. Induction: Let k be an arbitrary element of N. Assume that p(k) is true (this is theinduction hypothesis) and show that p(k + 1) is true.ExampleProve that S(n) � nXi=0 i3 = �n(n+ 1)2 �2Let p(n) be the predicate stating that the formula is true for n.Proof by mathematical induction1. Basis: Since S(0) = 03 = 0 and (0(0 + 1)=2)2 = 0, p(0) is true.2. Induction: Assume that p(k) is true, that is s(k) � kXi=0 i3 = �k(k + 1)2 �2.Now we show that p(k + 1) is true.Observe that S(k + 1) = S(k) + (k + 1)3. Using the inductive hypothesis, we evaluateS(k + 1) = S(k) + (k + 1)3= (k(k + 1)=2)2 + (k + 1)3= (k + 1)2( (k=2)2 + (k + 1))= (k + 1)2(k2=4 + k + 1)= (k + 1)2(k2 + 4k + 4)=4= (k + 1)2(k + 2)2=4= ((k + 1)(k + 2)=2)2Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Induction 104We have arrived at S(k + 1) = ((k + 1)(k + 2)=2)2 which shows that p(k + 1) is true.Therefore, the formula holds for any n 2 N according to the �rst principle of mathematicalinduction.8.5 Second principle of mathematical inductionLet p(n) be a predicate on N.De�nition (second principle of mathematical induction)The second principle of mathematical induction is an inference rule of the following form:if 8n (8k (k < n ^ p(k))! p(n)),then 8n p(n)Intuitively, for an arbitrary n if we can show that p(n) is true from the fact that the predicatep is true for all k (k < n) (this includes the base cases also), then we can conclude that thepredicate p is true for all n.Proof techniqueLet n be an arbitrary element in N.Assume that p(k) is true for every k < n and show that p(n) is true.ExampleAny integer n � 2 can be written as a product of primes.Proof by mathematical inductionLet p(n) be the predicate `n can be written as a product of primes'.Assume that p(k) is true for every 2 � k < n. Then we show that p(n) is true.The proof is by cases:Case 1: n is a prime.Then n is a product of one prime, namely itself, i.e. p(n) is true.Case 2: n is not a prime.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Induction 105Then n must have a factor i which satis�es 2 � i < n.So we can write n = i � j where j also satis�es 2 � j < nBy the induction hypothesis, both i and j can be written as products of primes.Therefore, n can be written as a product of the products of these primes, i.e. p(n) is true.In both cases, p(n) is true, so p(n) is true for all n � 2.8.6 Set inductionLet Elem be a set or a type. A set of elements of this type, denoted by Elem-set, can beinductively de�ned as follows:1. Base case: The empty set is a set of type Elem-set.2. Constructor function: A functionadd : Elem�Elem-set! Elem-setadd(e; s) = feg [ send addconstructs a new set from some previously de�ned set by adding a given element to it.3. Induction axiom: (p(f g) ^ ((e =2 S ^ p(S))) p(add(e;S))))) 8Sp(S)(where S is a variable of type Elem-set) holds for all predicates p de�ned on Elem-set.Note that the hypothesis e =2 S in the induction step, which ensures that the element e isnot already in the set S, can be assumed without loss of generality because if e is alreadyin the set the implication reduces to p(S)) p(S) which is automatically true.ExampleThe cardinality jsj of a �nite set s can be de�ned as follows:1. Base case: jf gj = 0.2. Induction: jadd(e; s)j = jsj+ 1 (e =2 s)Prove that js1 [ s2j = js1j+ js2j � js1 \ s2j holds for any �nite sets s1 and s2.Proof by induction: Let s1 be an arbitrary �xed set. Then we prove thatjs1 [ s2j = js1j+ js2j � js1 \ s2j holds for any �nite set s2.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Induction 1061. Base case: js1[fgj = js1j and js1j+ jfgj�js1\fgj = js1j+ jfgj�jfgj = js1j+0�0 = js1j.Hence the equation holds in the base case.2. Inductive step: Let s2 be a set for which js1 [ s2j = js1j+ js2j � js1 \ s2j holds (this is theinductive hypothesis), and let s02 be a set such that s02 = add(e; s2) where e =2 s2, so thatjs02j = js2j+ 1.Now consider the expressions s1 [ s02 and s1 \ s02.s1 [ s02= s1 [ add(e; s2) by substitution= s1 [ feg [ s2 by substitution= feg [ s1 [ s2 by the commutative law= add(e; (s1 [ s2)) by substitutionSimilarly,s1 \ s02= s1 \ add(e; s2) by substitution= s1 \ (feg [ s2) by substitution= (s1 \ feg) [ (s1 \ s2) by the distributive lawIn order to evaluate the last expressions in these two cases, we need to know in the �rst casewhether or not e 2 (s1 [ s2) and in the second whether or not e 2 s1. However, we know bythe induction hypothesis that e =2 s2, so e 2 (s1 [ s2) if and only if e 2 s1. We consider the twocases separately.Case 1: Suppose that e 2 s1, and hence also e 2 (s1 [ s2). In this case the following relationshold: s1 \ feg = fegadd(e; (s1 [ s2)) = s1 [ s2The �rst of these implies s1 \ s02 = add(e; s1 \ s2), and since e =2 s1 \ s2 because e =2 s2, this inturn implies js1 \ s02j = js1 \ s2j+ 1Similarly, the second equation implies s1 [ s02 = s1 [ s2, so that js1 [ s02j = js1 [ s2j.So, we can write the following:js1j+ js02j � js1 \ s02j= js1j+ (js2j+ 1)� (js1 \ s2j+ 1) by the above= js1j+ js2j � js1 \ s2j= js1 [ s2j by the inductive hypothesis= js1 [ s02j by the aboveReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 107So the equation holds in this case.Case 2: Now suppose that e =2 s1, and hence also e =2 (s1 [ s2). In this case, s1 \ feg = f g, so,from above, s1 \ s02 = f g [ (s1 \ s2) = s1 \ s2. Also, js1 [ s02j = jadd(e; s1 [ s2)j = js1 [ s2j+ 1.So, we can write the following:js1j+ js02j � js1 \ s02j= js1j+ (js2j+ 1)� js1 \ s2j by the above= js1j+ js2j � js1 \ s2j+ 1= js1 [ s2j+ 1 by the inductive hypothesis= js1 [ s02j by the aboveSo in this case we have also arrived atjs1 [ s02j = js1j+ js02j � js1 \ s02jIn other words the equation js1 [ s2j = js1j+ js2j � js1 \ s2jis proved.9 Introduction to propositional modal logic9.1 Modal formulaeLet � be a countable set of atomic formulae (or propositional variables) and Fma(�) be the setof all formulae generated from �.De�nition (symbols)The formulae of modal logic are made up of the following symbols:� The constant? (falsum or bottom)� The symbols2 (box) and ! (implies)(? binds more strongly than !)Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 108� The atomic formulae lettersp; q; r; p1; q1; r1; p2; q2; :::� The formulae letters A;B;A1; B1; A0 ; B0 ; :::De�nition (modal formula)Formulae are formed according to the following rules:� p is a formula for all p 2 �.� ? is a formula.� If A and B are formulae, i.e. if A 2 Fma(�) and B 2 Fma(�), thenA! Bis a formula, i.e. A! B 2 Fma(�).� If A is a formula, i.e. if A 2 Fma(�), then 2Ais a formula.2A can be variously read as:It is necessarily true that A.It is known that A.It will always be true that A.It ought to be that A.It is believed that A.After the program terminates, A.Note that this de�nition of formulae is an inductive de�nition.Other derived connectivesThe following abbreviations de�ne other connectives in terms of the symbols 2 and! as follows:Negation: � A is A! ?Verum (or top): > is � ?Disjunction: A1 _A2 is � A1 ! A2Conjunction: A1 ^A2 is � (A1 !� A2)Equivalence: A1 � A2 is (A1 ! A2) ^ (A2 ! A1)\Diamond": 3A is � 2 � AReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 109(see Section 2.1.8 for negation, disjunction and conjunction)In general, 3A means `it is sometimes true that A'. For example, 3A means under each of theabove reading of 2 as follows:It is possibly true that A.It is known that A sometimes.It will sometimes be true that A.It ought to be that sometimes A .It is believed that sometimes A.There is some execution that terminates with A true.ExamplesThe following are all formulae of modal logic:2A! A2A! 22A3?2A! 3A2A _2 � A2(A! B)! (2A! 2B)3A ^3B ! 3(A ^B)2(2A! A)! 2ASubformulaeThe �nite set Sf(A) of all subformulae of a formula A (i.e. A 2 Fma(�)) is de�ned inductivelyas follows: 1. Sf(p) = fpg2. Sf(?) = f?g3. Sf(A) = fA1 ! A2g [ Sf(A1) [ Sf(A2) if A is A1 ! A29.2 Schemata and substitutionDe�nition (schema)A schema is a collection of formulae all having a common syntactic form.For example, by the schemaReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 1102A! Awe mean the collection of formulaef2B ! B j B 2 Fma(�)gThe notion of a schema can be made more precise by considering uniform substitution, as follows.Let A and B be any formulae, and let p be an atomic formula.De�nition (uniform substitution)The uniform substitution (or total substitution) of B for p in formula A is the procedure ofreplacing each and every occurrence of p in A by B (see Section 2.1.9).De�nition (substitution instance)A formula A0 is called a substitution instance of a formula A if it arises by simultaneous uniformsubstitution of some formulae for some of the atomic formulae of A.Thus, if there exist some �nitely many atomic formulae p1; : : : ; pn, and formulae B1; : : : ; Bn,such that A0 is the result of simultaneous uniform substitution of Bi for pi for all 1 � i � n inA, then A0 is a substitution instance of the formula A.Let �A be the set of all substitution instances of A. Then a schema may be de�ned as a set offormulae which is equal to �A for some formula A.ExampleIf B is the formula 2p! p where p 2 �then �B is the set of formulae which was de�ned above as \the schema 2A! A".9.3 Frames and modelsDe�nition (frame)A frame is a pair consisting of a non-empty set S and a binary relation R on the set S. It isReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 111denoted by F = (S; R) where R � S� S.Examples� Time frame: Let S be a set of moments of time and let sRt mean `t is later that s'.Then F = (S; R) is a frame. In this frame 2A means \at all future times A" and 3Ameans \at some future time A".� Program states: Let S be the set of all possible states of a computation process with aprogram and let sRt mean `there is an execution of the program that starts in the states and terminates in the state t'. Then 2A means \every terminating execution of theprogram makes A true" and 3A means \there is some execution which terminates with Atrue"De�nition (model)A �-model or a model on a frame F = (S; R) is a triple (S; R; V ) where V is a function suchthat V : �! 2S . We denote this byM = (S; R; V ).In a modelM = (S; R; V ), the function V assigns to each atomic formula p 2 � a subset V (p)of S. Informally, V (p) can be thought of as the set of points at which p is true.De�nitionThe relation `A is true (or holds) at a point s in a model M', denoted byM j=s A,is de�ned inductively as follows:M j=s p i� s 2 V (p)M 6j=s ? (i.e. ? is false in any model)M j=s (A1 ! A2) i� (M j=s A1) implies (M j=s A2)M j=s 2A i� 8t 2 S(sRt impliesM j=t A)According to this de�nition 2A is true at the point s in a model if and only if A is true at allthe points related with the point s in the model.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 112Examples(a). Prove thatM j=s � A i�M 6j=s A (or � (M j=s A))M j=s � Ai� M j=s (A! ?) by abbreviationi� M j=s A impliesM j=s ? by the de�nition= M j=s A implies false by de�nition= � (M j=s A)= M 6j=s A(b). Calculate the truth condition for A ^B.M j=s A ^Bi� M j=s � (A!� B) by abbreviationi� � (M j=s (A!� B)) using the result ofexample (a)i� � (M j=s A impliesM j=s � B) by the de�nitioni� � (M j=s A implies � (M j=s B)) using the resultexample (a)= M j=s A ^M j=s B by substitutionWe arrive at M j=s A ^B i� M j=s A ^ M j=s B.(c). Prove that 8s(M j=s >) is true.M j=s >i� M j=s � ? by abbreviationi� � (M j=s ?) by the example (a)? is false in any model, thus= trueThat is, > is true in any model.(d). Work out the truth condition forM j=s (2A! 2B).
Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 113M j=s (2A! 2B)i� (M j=s 2A) implies (M j=s 2B)i� 8t 2 S � (sRt impliesM j=t A) implies 8t 2 S � (sRt impliesM j=t B)i� 8t 2 S � (sRt implies (M j=t A impliesM j=t B))i� 8t 2 S � (sRt impliesM j=t (A! B))i� M j=s 2(A! B)Here we used the following tautology from propositional logic:(A! B)! (A! C) = (A! (B ! C)).Thus we arrive at M j=s (2A! 2B) i�M j=s 2(A! B).9.4 Valuation and tautologyLetM be the �-model (S; R; V ), Bool be the set ftrue, falseg, and let s 2 S be a given point.De�nition (valuation of an atomic formula)The function vs : �! Bool de�ned asvs(p) = ( true if s 2 V (p)false otherwiseis called a valuation of the atomic formula.Thus a model on a frame gives rise to a collection fvs j s 2 Sg of valuations of �, and conversely,such a collection of functions de�nes the model in which V (p) = fs j vs(p) = trueg.De�nition (quasi-atomic formula)A formula A is quasi-atomic if it is atomic (i.e. A 2 �) or if it begins with a 2, i.e. A = 2Bfor some B 2 �.If �q is the set of all quasi-atomic formulae, then any formula A may be constructed frommembers of �q [ f?g using only the connective !. Hence, any valuationReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 114v : �q ! Boolof the quasi-atomic formulae extends uniquely to a valuationv : Fma(�)! Boolof all formulae.De�nition (tautology)A formula A is a tautology if v(A) = true for every valuation v of its quasi-atomic subformulae.9.5 Truth and validityDe�nition (truth of a formula)A formula A is true in a modelM, denoted byM j= A, if it is true at all points inM, i.e. if8s 2 S (M j=s A)De�nition (valid)A formula A is valid in the frame F = (S; R), denoted by F j= A, ifM j= A for all modelsM = (S; R; V ) based on the frame F .De�nitionIf C is a class of models, then a formula A is true in C, denoted by C j= A, if A is true in allmembers of C.De�nitionIf C is a class of frames, then a formula A is valid in C, denoted by C j= A, if A is valid in allmembers of C.De�nitionA schema is said to be true in a model (respectively, valid in a frame) if all instances of theschema have that property. More generally, we use the notations M j= � and F j= �, where� � Fma(�), to mean that all members of � are true in the modelM and valid in the frame Frespectively.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 115ExamplesThe following formulae are true in all models, hence valid in all frames.2>2(A! B)! (2A! 2B)3(A! B)! (2A! 3B)2(A! B)! (3A! 3B)2(A ^B) � (2A! 2B)3(A _B) � (3A! 3B)We prove the �rst two examples:LetM be a model on a frame F = (S; R) and let s be an arbitrary point in S.Proof:M j=s 2>i� sRt impliesM j=t > for all t 2 S by the de�nition;M j=t > is true in any model,soi� sRt implies true = true by the property of implicationThat is,M j=s 2> is true in any model.
Proof:M j=s (2(A! B)! (2A! 2B))i� (M j=s 2(A! B)) implies (M j=s (2A! 2B)) by the de�nitioni� (M j=s 2(A! B)) implies (M j=s 2(A! B)) see Example (d)in Section 9.3The last expression is true according to one of the properties of implication.9.6 Generated submodelsLet F = (S; R) be a frame.De�nition (submodel)IfM = (S; R; V ) is a model and t 2 S, then the submodel ofM generated by t isMt = (St; Rt; V t)Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 116where St = fu 2 S j tR�ug(R� is the re
exive and transitive closure of the relation R; see Section 6.5)Rt = R \ (St � St)V t(p) = V (p) \ St.Submodel lemmaIf A 2 Fma(�), then for any u 2 St,Mt j=u A i� M j=u AProof by induction:According to the de�nitions of St, Rt and V t(p), u 2 St implies u 2 S, sRtu implies sRu, andp 2 V t(p) implies p 2 V (p).� Base cases:1. If A = p where p 2 �, thenMt j=u pi� p 2 V t(p) by the de�nitioni� p 2 V (p) see de�nition of V t(p)i� M j=u A by the de�nition2. If A = ?, then it is not in any model, thusMt 6j=u ? andM 6j=u ?Therefore, the assertion is true in both base cases.� Inductive step: Let B and D be formulae such thatMt j=u B i� M j=u Band Mt j=u D i� M j=u Dhold.1. Let A = B ! D. ThenMt j=u (B ! D)i� (Mt j=u B)! (Mt j=u D) by the de�nitioni� (M j=u B)! (M j=u D) by the inductionhypothesisi� M j=u (B ! D) by the de�nitionReport No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Introduction to propositional modal logic 1172. Let A = 2B. ThenMt j=u 2Bi� uRts!Mt j=s B for all s 2 Sti� uRs!M j=s B by the inductionhypothesisi� M j=s 2B by the de�nitionThus, according to the induction principle the lemma is true.Corollary1. M j= A impliesMt j= A.2. M j= A i� A is true in all generated submodels ofM.3. F j= A i� A is valid in all generated subframes of F .9.7 p-MorphismsLetM1 = (S1; R1; V1) andM2 = (S2; R2; V2) be models.De�nition (p-morphism)A p-morphism fromM1 toM2 is a function f : S1 ! S2 satisfyingsR1t implies f(s)R2f(t);f(s)R2u implies 9t(sR1t ^ f(t) = u);s 2 V1(p) i� f(s) 2 V2(p).A function satisfying the �rst two conditions is a p-morphism from the frame (S1; R1) to theframe (S2; R2).p-Morphism lemma 1If A 2 Fma(�), then for any s 2 S1,M1 j=s A i�M2 j=f(s) A.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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Conclusion 118De�nition (p-morphic image)If there is a p-morphism f : S1 ! S2 that is onto (surjective), then the frame F2 is called ap-morphic image of the frame F1.p-Morphism lemma 2If F2 is a p-morphic image of F1, then for any formula A,F1 j= A implies F2 j= A.Proofs of these lemmas are as exercises left for the reader.10 ConclusionIn this report we have presented material for a course on mathematics covering those topics whichare the most important for those wishing to study formal methods, such as RAISE, VDM, andZ. This material could be used immediately prior to a course on formal methods as a shortintroductory course on mathematics for students without the required mathematical knowledge.It could also, suitably extended, form the bulk of a longer course on \Mathematics for computerscience" forming part of the curriculum in computer science departments in universities, andthus could be useful to students of computer science in general.We have also presented in the �nal section of the report material for an introductory short courseon modal logic which could similarly be presented before a course on Duration Calculus.Teaching materials for each of the individual sections included in this report, speci�cally over-head projector foils for lecturers, are available from UNU/IIST and can in fact be downloadedelectronically from UNU/IIST's home pages at the following URL:http://www.iist.unu.edu/home/Unuiist/newrh/II/1/3/2/page.html.11 AcknowledgementsMany thanks to my supervisor Richard Moore for reading and revising both the manuscript andthe �nal version of this report, and providing helpful comments on all sections of the report.The text and its contents became more readable and contain fewer errors thanks to him. Mythanks to Dang Van Hung for reading and making valuable comments on the section on modallogic. Thanks also to all at UNU/IIST who helped with this project and who made my stay atUNU/IIST possible.Report No. 173, August 1999 UNU/IIST, P.O. Box 3058, Macau
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